Low- and Medium-Energy Antiproton Experiments at Fermilab

Daniel M. Kaplan

Flavor Subgroup Meeting
Fermilab Steering Group
June 1, 2007
Outline

• Antiproton sources
• Hyperon CP violation
• Issues in charm and charmonium
• Other physics
• Summary
Antiproton Sources

<table>
<thead>
<tr>
<th>Facility</th>
<th>p_{max} [GeV/c]</th>
<th>Stacking rate</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEAR/ACOL</td>
<td>2*</td>
<td>$\leq 6 \times 10^{10}$/hr</td>
<td>$\leq 1996^+$</td>
</tr>
<tr>
<td>AD</td>
<td>0.3*</td>
<td>$\leq 2 \times 10^{9}$/hr</td>
<td>now</td>
</tr>
<tr>
<td>FNAL</td>
<td>8.9</td>
<td>$\leq 2 \times 10^{11}$/hr</td>
<td>now</td>
</tr>
<tr>
<td>GSI-FAIR</td>
<td>15*</td>
<td>$\leq 3.5–7 \times 10^{10}$/hr?</td>
<td>$>2014?$</td>
</tr>
</tbody>
</table>

* stacking at 3.5 GeV/c
† LEAR was shut down to enhance CERN’s LHC focus
FNAL Antiproton Source

- Antiproton stacking rate ($\approx 2 \times 10^{11}$/hr) unmatched by any other existing or planned facility

- Stochastic cooling (& absence of synchrotron radiation) provides very small (~ 100 keV) beam energy spread

- Very precise beam-energy calibration via measured revolution frequency + orbit length (from BPM measurements and Accumulator lattice model)

These features exploited (most recently in 2000) by charmonium experiments E760 and E835
What can it do?

• Precision measurements of charmonium
• Study of recently discovered charmonium-related states: \textit{X}(3872) etc...
• High-statistics studies of hyperon CP violation and rare decays
• High-statistics studies of open charm (mixing? CP?)
• Precision antiproton and antihydrogen studies (CPT tests etc.)
• Bottomonium formation (colliding-beam)?
Hyperon CP Violation

• Example Feynman diagrams (SM):

\[\Lambda \text{ decay:} \]

\[\Lambda \rightarrow u \rightarrow u \rightarrow u \rightarrow p \]

\[d \rightarrow d \rightarrow d \]

\[W^- \rightarrow s \rightarrow u, u, u \rightarrow \pi^- \]

\[\Lambda \text{ penguin decay:} \]

\[\Lambda \rightarrow u \rightarrow u \rightarrow u \rightarrow p \]

\[d \rightarrow d \rightarrow d \]

\[W \rightarrow s \rightarrow u, c, t \rightarrow \pi \]

\[g, \gamma, Z \rightarrow u, u \]

• Large CP asymmetries poss. in nonminimal SSM etc.
Hyperon CP Violation

- CP-odd observables:
 - Decay amplitude for $\Delta S = 1$ decay of spin-1/2 strange baryon into spin-1/2 baryon and meson (e.g., $\Lambda \rightarrow p \pi^{-}$):
 \[
 M = S + P \vec{\sigma} \cdot \hat{q}_p
 \]
 - S-wave amplitude
 - P-wave amplitude
 - Proton-momentum unit vector

 - Nonuniform proton angular distribution in Λ rest frame:
 \[
 \frac{dN}{d\Omega} = \frac{1}{4\pi} \left(1 + \alpha_\Lambda \vec{P}_\Lambda \cdot \hat{q}_p \right) \quad \text{(parity violation)}
 \]
 - Where
 \[
 \alpha_\Lambda \equiv \frac{2 \text{Re} S^*P}{|S|^2 + |P|^2}, \quad \beta_\Lambda \equiv \frac{2 \text{Im} S^*P}{|S|^2 + |P|^2}
 \]
 - [Lee & Yang, 1957]

 - \[A_\Lambda \equiv \frac{\alpha_\Lambda + \bar{\alpha}_\Lambda}{\alpha_\Lambda - \bar{\alpha}_\Lambda}, \quad B_\Lambda \equiv \frac{\beta_\Lambda + \bar{\beta}_\Lambda}{\beta_\Lambda - \bar{\beta}_\Lambda}, \quad \Delta_\Lambda \equiv \frac{\Gamma_{\Lambda \rightarrow P\pi} - \bar{\Gamma}_{\Lambda \rightarrow P\pi}}{\Gamma_{\Lambda \rightarrow P\pi} + \bar{\Gamma}_{\Lambda \rightarrow P\pi}} \quad \text{CP-odd} \]
Hyperon CP Violation

- **Theory & experiment:**

 Theory [Donoghue, He, Pakvasa, Valencia, et al., e.g., PRL 55, 162 (1985); PRD 34, 833 (1986); PLB 272, 411 (1991)]

 - **SM:** $A_\Lambda \sim 10^{-5}$
 - **Other models:** $\leq O(10^{-3})$

 [e.g. SUSY gluonic dipole: X.-G.He et al., PRD 61, 071701 (2000)]

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Decay Mode</th>
<th>A_Λ</th>
</tr>
</thead>
<tbody>
<tr>
<td>R608 at ISR</td>
<td>$pp \rightarrow \Lambda X, \bar{p}p \rightarrow \bar{\Lambda}X$</td>
<td>-0.02 ± 0.14</td>
</tr>
<tr>
<td>DM2 at Orsay</td>
<td>$e^+e^- \rightarrow J/\Psi \rightarrow \Lambda\bar{\Lambda}$</td>
<td>0.01 ± 0.10</td>
</tr>
<tr>
<td>PS185 at LEAR</td>
<td>$p\bar{p} \rightarrow \Lambda\bar{\Lambda}$</td>
<td>0.006 ± 0.015</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Decay Mode</th>
<th>$A_\Xi + A_\Lambda$</th>
</tr>
</thead>
<tbody>
<tr>
<td>E756 at Fermilab</td>
<td>$\Xi \rightarrow \Lambda\pi, \Lambda \rightarrow p\pi$</td>
<td>0.012 ± 0.014</td>
</tr>
<tr>
<td>E871 at Fermilab</td>
<td>$\Xi \rightarrow \Lambda\pi, \Lambda \rightarrow p\pi$</td>
<td>$(0.0 \pm 6.7) \times 10^{-4}$</td>
</tr>
</tbody>
</table>

 (HyperCP) $\Xi \rightarrow \Lambda\pi, \Lambda \rightarrow p\pi$

 - $\approx 2 \times 10^{-4}$ [projected]
Results (from farm histos):

Enormous HyperCP Dataset

- Ξ⁺, 2.07 billion
- Ξ⁺, 0.46 billion
 \[\sigma_{\Xi} = 1.6 \text{ MeV/c}^2 \]
- Ω⁺, 14.6 million
- Ω⁺, 5.0 million
 \[\sigma_{\Omega} = 1.5 \text{ MeV/c}^2 \]

- K⁺, 394 million
- K⁺, 164 million
 \[\sigma_{K} = 2.0 \text{ MeV/c}^2 \]
- K⁰, (+) 2.04 billion
- K⁰, (-) 0.72 billion
 \[\sigma_{K^0} = 2.9 \text{ MeV/c}^2 \]
Some HyperCP Discoveries:

- $\phi_\Xi = -(2.39 \pm 0.64 \pm 0.64)^\circ \Rightarrow \beta_\Xi \neq 0$ \hspace{1cm} 2nd non-zero transv. asymm.
- $\alpha_\Omega = 0.0175 \pm 0.0024 \neq 0$ \hspace{1cm} $\Rightarrow \Omega^- \rightarrow \Lambda K^-$ violates parity
- $\frac{1}{2}[\alpha(\Lambda K^-)+\alpha(\Lambda K^+)] = -0.004 \pm 0.040$ \hspace{1cm} (but conserves CP)
- $A_{\Xi\Lambda} = (0.0 \pm 5.1 \pm 4.4) \times 10^{-4}$ \hspace{1cm} $\Rightarrow \Xi^- \rightarrow \Lambda \pi^-$ conserves CP
 \hspace{1cm} (1st \approx5% of sample - full analysis still in progress)
- $\Sigma^+ \rightarrow p\mu^+\mu^- : B \approx 9 \times 10^{-8}$ \hspace{1cm} (or 3×10^{-8} if intermediate P^0)

Surprise!

$\approx 2.4\sigma$ fluctuation of SM
- SUSY Sgoldstino?
- SUSY light Higgs?
Does the HyperCP Evidence for the Decay $\Sigma^+ \rightarrow p\mu^+\mu^-$ Indicate a Light Pseudoscalar Higgs Boson?

Xiao-Gang He*
Department of Physics and Center for Theoretical Sciences, National Taiwan University, Taipei, Taiwan

Jusak Tandean†
Departments of Mathematics, Physics, and Computer Science, University of La Verne, La Verne, California 91750, USA

G. Valencia‡
Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
(Received 2 November 2006; published 22 February 2007)

The HyperCP Collaboration has observed three events for the decay $\Sigma^+ \rightarrow p\mu^+\mu^-$ which may be interpreted as a new particle of mass 214.3 MeV. However, existing data from kaon and B-meson decays provide stringent constraints on the construction of models that support this interpretation. In this Letter we show that the “HyperCP particle” can be identified with the light pseudoscalar Higgs boson in the next-to-minimal supersymmetric standard model, the A_1^0. In this model there are regions of parameter space where the A_1^0 can satisfy all the existing constraints from kaon and B-meson decays and mediate $\Sigma^+ \rightarrow p\mu^+\mu^-$ at a level consistent with the HyperCP observation.
Scale & Reach

• New, high-rate, magnetic spectrometer with:
 - PbWO\(_4\) calorimeter
 - silicon vertex detector
 - displaced-vertex trigger
 - run \(p\bar{p} = 5.4 \) GeV/c \((2m_{\Omega} < \sqrt{s} < 2m_{\Omega} + m_{\pi^0})\)
 \(\text{@ } \mathcal{L} \approx 10^{32} \text{ cm}^{-2} \text{ s}^{-1} (10 \times \text{E835}) \)
 \(\Rightarrow \approx 10^8 \Omega^- \bar{\Omega}^+ / \text{yr} + \approx 10^{12} \) inclusive hyperon events!
What Can This Do?

- Observe many more $\Sigma^+ \rightarrow p\mu^+\mu^-$ events and confirm or refute SUSY interpretation

- Discover or limit $\Omega^- \rightarrow \Xi^-\mu^+\mu^-$ and confirm or refute SUSY interpretation

- Discover or limit CP violation in $\Omega^- \rightarrow \Lambda K^-$ and $\Omega^- \rightarrow \Xi^0\pi^-$ via partial-rate asymmetries

 \[\text{Predicted } \Delta B \sim 10^{-5} \text{ in SM, } \leq 10^{-3} \text{ if NP}\]

 \[\text{Predicted } B \sim 10^{-6} \text{ if } P^0 \text{ real}\]
What Else Can This Do?

- Much interest lately in new states observed in charmonium region: $X(3872)$, $X(3940)$, $Y(3940)$, $Y(4260)$, and $Z(3930)$

- $X(3872)$ of particular interest b/c may be the first hadron-antihadron ($D^0 \overline{D}^{*0} + c.c.$) molecule
What Else Can This Do?

- Belle, Aug. 2003: \(B^\pm \rightarrow X + K^\pm \), \(X \rightarrow J/\psi \pi^+\pi^- \)

Since confirmed by CDF, D0, & BaBar
- Not consistent with being charmonium state
- Very near \(D^0 \bar{D}^{*0} \) threshold (\(\Delta mc^2 = 0.6\pm0.6 \text{ MeV} \))
What Else Can This Do?

• Much interest lately in new states observed in charmonium region: $X(3872)$, $X(3940)$, $Y(3940)$, $Y(4260)$, and $Z(3930)$

• $X(3872)$ of particular interest b/c may be the first hadron-antihadron ($D^0 \overline{D}^{*0} + \text{c.c.}$) molecule

 ➡ need very precise mass measurement to confirm or refute

 ➡ $\bar{p}p \rightarrow X(3872)$ formation *ideal* for this
Also,...

- Study other X, Y, Z states
- Worthwhile measurements that E835 could have made but didn’t...
 (lack of beam time for precision scans when one didn’t know exactly where to look)
 - h_c mass & width, χ_c radiative-decay angular distributions, η_c' full and radiative widths,...
- ...improved limits on \bar{p} lifetime and branching ratios (APEX),...
- Open-charm studies with $\mathcal{O}(10^9)$ produced events
Example: h_c

- $h_c (1 \, ^1P_1)$ state of charmonium only way to study $c\bar{c}$ spin-0 hyperfine splitting: $m(^1P_1) - \left< m_{\text{spin-weighted}}(^3P_J) \right>$

- Not experimentally accessible in strangeonium or (so far) bottomonium

- Splitting predicted to be $\lesssim 1$ MeV in potential models if
 - confinement potential has no vector component
 and
 - coupled-channel effects small
 (both expected to be true)

- But h_c production in e^+e^- suppressed \Rightarrow not easy
Example: h_c

- h_c found ($\approx 3\sigma$) in $J/\psi \pi^0$ in E760 (E835 predecessor):
- Not confirmed by E835, but seen in $\eta_c\gamma$:

...and by CLEO \[\text{[Rosner et al., PRL 95, 102003 (2005)]}\]

- But best mass meas’t (E835) based on a signal that’s not yet statistically established
Example: h_c

- PDG avg, $\langle (^3P_J) \rangle = 3525.36 \pm 0.06$ MeV compatible @ 2σ:

 WEIGHTED AVERAGE
 3525.93 \pm 0.27 (Error scaled by 1.5)

\[\chi^2 \]

FNAL E835, 15 evts
FNAL E760, 59 evts, \approxruled out by E835
CERN R704, 5 evts, \approxruled out by E760

(Confidence Level = 0.077)

- Desirable to confirm E835 meas’t with greater statistics!

D. M. Kaplan, IIT
Fermilab Steering Group Flavor Subgroup Meeting
1 June 2007
Example: h_c

- Desirable to confirm E835 meas’t with greater statistics!
- Not so easy!
 - small $\text{BR}(\eta_c \rightarrow \gamma\gamma) = (2.8 \pm 0.9) \times 10^{-4}$
 - cuts to suppress π^0 bkg gave $\approx 3\%$ efficiency in E835
- More-favorable modes?

 \[
 \begin{align*}
 \eta'(958)\pi\pi & \quad (4.1 \pm 1.7 \%) \\
 K^*(892) \bar{K}^*(892) & \quad (9.2 \pm 3.4 \%) \times 10^{-3} \\
 K^*0 \bar{K}^*0 \pi^+\pi^- & \quad (1.5 \pm 0.8 \%) \\
 \phi K^+ K^- & \quad (2.9 \pm 1.4 \%) \times 10^{-3} \\
 \phi\phi & \quad (2.7 \pm 0.9 \%) \times 10^{-3}
 \end{align*}
 \]

- Require magnetic spectrometer
Bottomonium?

- Spectrum of $\bar{b}b$ states poorly known compared to charmonium
- Could probe $\bar{p}p$ coupling of bottomonium with exploratory colliding-beam run ($\sqrt{s} > 9.4$ GeV too high for Accumulator fixed-tgt)
Parasitic Exp’ts

• Antihydrogen in-flight (CPT tests, e.g. Lamb shift):
 - efforts @ AD with trapped anti-H have encountered difficulties

• Best antiproton lifetime and decay-mode limits set by APEX experiment at Accumulator
 - could improve limits with more data

• etc...
Is There an Interested Collaboration?

• I am drafting LoI and soliciting collaborators

 Thomas J. Phillips
 Duke University, Durham, N. Carolina 27708 USA

 Giorgio Apollinari, Daniel R. Broemmelsiek, Charles N. Brown,
 David C. Christian, Paul Derwent, Keith Gollwitzer, Alan Hahn,
 Vaia Papadimitriou, Steven Werkema, Herman B. White
 Fermilab, Batavia, IL 60510, USA

 Wander Baldini, Giulio Stancari, Michelle Stancari
 INFN, Sezione di Ferrara, Ferrara, Italy

 Gerald P. Jackson
 Hbar Technologies, LLC, West Chicago, IL 60185, USA

 Daniel M. Kaplan,* Howard A. Rubin, Yagmur Torun, Christopher G. White
 Illinois Institute of Technology, Chicago, Illinois 60616, USA

 Todd K. Pedlar
 Luther College, Decorah, IA 52101, USA

 Jerome Rosen
 Northwestern University, Evanston, IL 60208, USA

 E. Craig Dukes
 University of Virginia, Charlottesville, Virginia 22903, USA

...& growing...
also interest @
other INFN branches &c...

...PANDA collab. might want opp’ty for early tests

D. M. Kaplan, IIT Fermilab Steering Group Flavor Subgroup Meeting 1 June 2007
Summary

• Best experiment ever on hyperons, charm, and charmonia may be feasible a few years from now at Fermilab

• Measurements complementary to, & not feasible at, LHC

• Modest effort could yield substantial impact

• Small additional effort (e.g., 1 or 2 new small rings) could enable broad range of experiments