#### A New Experiment to Study Hyperon CP Violation and the Charmonium System

#### Daniel M. Kaplan

ILLINOIS INSTITUTE OF TECHNOLOGY Transforming Lives. Inventing the Future. www.iit.edu

Meeting with the Director Fermilab May 10, 2007

### Outline

- Hyperon CP violation
- HyperCP experiment
- Low-energy antiprotons
- A new experiment
- Issues in charmonium
- Summary

### Hyperon CPViolation?

#### • An old topic:

PHYSICAL REVIEW

VOLUME 184, NUMBER 5

25 AUGUST 1969

#### Final-State Interactions in Nonleptonic Hyperon Decay

O. E. OVERSETH\*

The University of Michigan, Ann Arbor, Michigan 48104

AND

S. PAKVASA† University of Hawaii, Honolulu, Hawaii 96822 (Received 1 April 1969)

#### E. Tests for CP and CPT Invariance

Thus in hyperon decay,  $\bar{\alpha} \neq -\alpha$  implies *CP* violation in this process independent of the validity of the *CPT* theorem. This is also true if  $\bar{\beta} \neq -\beta$ .

Also, as usual, CPT invariance implies equality of  $\Lambda^0$ and  $\overline{\Lambda}^0$  lifetimes, whereas CP invariance implies equality of partial rates  $\Gamma^0 = \overline{\Gamma}^0$ , and  $\Gamma^- = \overline{\Gamma}^+$ . This is also true when final-state interactions are included in the analysis.





### Hyperon CPViolation?

#### • Theory & experiment:

<u>Theory</u> [Donoghue, He, Pakvasa, Valencia, et al., e.g., PRL 55, 162 (1985); PRD 34, 833 (1986); PLB 272, 411 (1991)]

• **SM**:

 $A_{\Lambda} \sim 10^{-5}$ 

• Other models:  $\leq O(10^{-3})$ [e.g. SUSY gluonic dipole: X.-G.He et al., PRD 61, 071701 (2000)]

| Experiment       | Decay Mode                                            | $\mathbf{A}_{\Lambda}$                     |                                           |
|------------------|-------------------------------------------------------|--------------------------------------------|-------------------------------------------|
| R608 at ISR      | $pp \to \Lambda X, \bar{p}p \to \bar{\Lambda} X$      | - $0.02 \pm 0.14$ [P. Cha                  | uvat et al., PL 163B (1985) 273]          |
| DM2 at Orsay     | $e^+e^- \to J/\Psi \to \Lambda \bar{\Lambda}$         | <b>0.01 ± 0.10</b> [M.H. ]                 | Гіхіег et al., PL B212 (1988) 523]        |
| PS185 at LEAR    | $p \bar{p}  ightarrow \Lambda \bar{\Lambda}$          | <b>0.006</b> ± <b>0.015</b> [P.D. B        | arnes et al., NP B 56A (1997) 46]         |
| Experiment       | Decay Mode                                            | $\mathbf{A}_{\Xi} + \mathbf{A}_{\Lambda}$  |                                           |
| E756 at Fermilab | $\Xi  ightarrow \Lambda \pi, \Lambda  ightarrow p\pi$ | <b>0.012 ± 0.014</b> [K.B. L               | uk et al., PRL 85, 4860 (2000)]           |
| E871 at Fermilab | $\Xi \to \Lambda \pi, \Lambda \to p \pi$              | $(0.0 \pm 6.7) \times 10^{-4}$ [T.]<br>PRI | Holmstrom et al.,<br>2 93. 262001 (2004)] |
| (HyperCP)        |                                                       | $≈2 × 10^{-4}$ [projec                     | ted]                                      |
| . M. Kaplan, IIT | FNAL-pbar LoI Meeting I0 May 2007                     |                                            |                                           |

6





#### ...and Fast HyperCP DAQ System

#### ≈20,000 channels of MWPC latches



#### ≈100 kHz of triggers ...written to 32 tapes in parallel



#### **HyperCP** Collaboration



A. Chan, Y.-C. Chen, C. Ho, P.-K. Teng Academia Sinica, Taiwan

K. Clark, M. Jenkins University of South Alabama, USA

W.-S. Choong, Y. Fu, G. Gidal, T. D. Jones, K.-B. Luk\*, P. Gu, P. Zyla University of California, Berkeley, USA

> C. James, J. Volk Fermilab, USA

J. Felix, G. Moreno, M. Sosa University of Guanajuato, Mexico

R. Burnstein, A. Chakravorty, D. Kaplan, L. Lederman, D. Rajaram, H. Rubin, N. Solomey, C. White *Illinois Institute of Technology, USA* 

N. Leros, J.-P. Perroud University of Lausanne, Switzerland

H. R. Gustafson, M. Longo, F. Lopez, H. Park University of Michigan, USA

E. C. Dukes\*, C. Durandet, T. Holmstrom, M. Huang, L. C. Lu, K. S. Nelson University of Virginia, USA \*co-sp

\*co-spokespersons

D. M. Kaplan, IIT

FNAL-pbar Lol Meeting

10 May 2007 10

### Some HyperCP Discoveries:

- $\phi_{\Xi} = -(2.39 \pm 0.64 \pm 0.64)^{\circ} \Rightarrow \beta_{\Xi} \neq 0$  2<sup>nd</sup> non-zero transv. asymm.
- $\alpha_{\Omega} = 0.0175 \pm 0.0024 \neq 0 \qquad \Rightarrow \Omega^{-} \rightarrow \Lambda K^{-}$  violates parity
- $\frac{1}{2}[\alpha(\Lambda K^{-})+\alpha(\overline{\Lambda}K^{+})] = -0.004 \pm 0.040$  (but conserves CP)
- $A_{\Xi\Lambda} = (0.0 \pm 5.1 \pm 4.4) \times 10^{-4} \Rightarrow \Xi^- \rightarrow \Lambda \pi^- \text{ conserves CP}$ (1<sup>st</sup> ≈5% of sample - full analysis still in progress)
- $\Sigma^+ \to p \mu^+ \mu^-$ : smallest baryon BR0everirseenediate P0)



PRL 98, 081802 (2007)

#### Does the HyperCP Evidence for the Decay $\Sigma^+ \rightarrow p \mu^+ \mu^-$ Indicate a Light Pseudoscalar Higgs Boson?

Xiao-Gang He\*

Department of Physics and Center for Theoretical Sciences, National Taiwan University, Taipei, Taiwan

Jusak Tandean<sup>†</sup>

Departments of Mathematics, Physics, and Computer Science, University of La Verne, La Verne, California 91750, USA

G. Valencia<sup>‡</sup>

Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA (Received 2 November 2006; published 22 February 2007)

The HyperCP Collaboration has observed three events for the decay  $\Sigma^+ \rightarrow p\mu^+\mu^-$  which may be interpreted as a new particle of mass 214.3 MeV. However, existing data from kaon and *B*-meson decays provide stringent constraints on the construction of models that support this interpretation. In this Letter we show that the "HyperCP particle" can be identified with the light pseudoscalar Higgs boson in the next-to-minimal supersymmetric standard model, the  $A_1^0$ . In this model there are regions of parameter space where the  $A_1^0$  can satisfy all the existing constraints from kaon and *B*-meson decays and mediate  $\Sigma^+ \rightarrow p\mu^+\mu^-$  at a level consistent with the HyperCP observation.

# Some HyperCP Publications:

- L. C. Lu *et al.*, "Measurement of the asymmetry in the decay  $\overline{\Omega}^+ \to \overline{\Lambda}K^+ \to \overline{p}\pi^+K^+$ ," Phys. Rev. Lett. **96**, 242001 (2006).
- D. Rajaram *et al.*, "Search for the Lepton-Number-Violating Decay  $\Xi^- \rightarrow p\mu^-\mu^-$ ," Phys. Rev. Lett. **94**, 181801 (2005).
- C. G. White *et al.*, "Search for Delta  $\Delta S = 2$  Nonleptonic Hyperon Decays," Phys. Rev. Lett. **94**, 101804 (2005).
- H. K. Park *et al.*, "Evidence for the Decay  $\Sigma^+ \rightarrow p\mu^+\mu^-$ ," Phys. Rev. Lett. **94**, 021801 (2005).
- M. Huang *et al.*, "New Measurement of  $\Xi^- \to \Lambda \pi^-$  Decay Parameters," Phys. Rev. Lett. **93**, 011802 (2004);
- M. J. Longo *et al.*, "High-Statistics Search for the  $\Theta^+(1.54)$  Pentaquark," Phys. Rev. D 70, 111101(R) (2004);
- T. Holmstrom *et al.*, "Search for *CP* Violation in Charged-Ξ and Λ Hyperon Decays," Phys. Rev. Lett. **93**, 262001 (2005);
- Y. C. Chen *et al.*, "Measurement of the Alpha Asymmetry Parameter for the  $\Omega^- \to \Lambda K^-$ Decay," Phys. Rev. D **71**, 051102(R) (2005);
- L. C. Lu *et al.*, "Observation of Parity Violation in the  $\Omega^- \to \Lambda K^-$  Decay," Phys. Lett. B **617**, 11 (2005).
- R. A. Burnstein *et al.*, "HyperCP: A High-Rate Spectrometer for the Study of Charged Hyperon and Kaon Decays," Nucl. Instrum. Methods A **541**, 516 (2005).

### How to follow up?

- Tevatron fixed-target is no more
- CERN fixed-target not as good (energy, duty factor)
- Main Injector fixed-target not as good (same reasons)
- AND HyperCP was already rate-limited
- Big collider experiments can't trigger efficiently



What else is there?

### Low-Energy Antiprotons!

 Until "HyperCP era," world's best limit on hyperon CP violation came from PS185 at LEAR:

| Experiment                    | Decay Mode                                            | $\mathbf{A}_{\mathbf{\Lambda}}$                                               |                                                         |
|-------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------|
| R608 at ISR                   | $pp \to \Lambda X, \bar{p}p \to \bar{\Lambda} X$      | - <b>0.02 ± 0.14</b> [P. C                                                    | hauvat et al., PL 163B (1985) 273]                      |
| DM2 at Orsay                  | $e^+e^- \to J/\Psi \to \Lambda \bar{\Lambda}$         | $0.01 \pm 0.10$ [M.H                                                          | . Tixier et al., PL B212 (1988) 523                     |
| PS185 at LEAR                 | $par{p}  ightarrow \Lambdaar{\Lambda}$                | $0.006 \pm 0.015$ [P.D.                                                       | Barnes et al., NP B 56A (1997) 46                       |
| Experiment                    | Decay Mode                                            | $\mathbf{A}_{\Xi} + \mathbf{A}_{\Lambda}$                                     |                                                         |
| E756 at Fermilab              | $\Xi  ightarrow \Lambda \pi, \Lambda  ightarrow p\pi$ | <b>0.012 ± 0.014</b> [K.B.                                                    | Luk et al., PRL 85, 4860 (2000)]                        |
| E871 at Fermilab<br>(HyperCP) | $\Xi \to \Lambda \pi, \Lambda \to p\pi$               | $(0.0 \pm 6.7) \times 10^{-4} [P]$<br>$\approx 2 \times 10^{-4} [projection]$ | T. Holmstrom et al.,<br>RL 93. 262001 (2004)]<br>ected] |
|                               | ENIAL short                                           | Maating                                                                       | 10 May 2007 1                                           |

D. M. Kaplan, IIT

### Low-Energy Antiprotons!

• PS185 was limited by LEAR  $\overline{p}$  flux ( $\leq 10^{5}/s$ )



## Low-Energy Antiprotons!

- Also good for charmonium:
  - Thanks to superb precision of antiproton beam energy and momentum spread, E760/835 @ Fermilab Antiproton Accumulator made very precise measurements of charmonium parameters, e.g.:
    - best measurements of various  $\eta_c$ ,  $\chi_c$ ,  $h_c$  masses, widths, branching ratios,...
    - interference of continuum & resonance signals
- G€ GSI-Darmstadt upgrade will create similar facility, but not before 2014

### A Possible Scheme

- Once Tevatron shuts down (≈2009), <sup>™</sup>
  - reassemble E835 EM spectrometer
  - add small magnetic spectrometer
  - add high-ρ gas-jet, wire, or pellet tgt <\$10M</p>
  - add 2<sup>ndary</sup>-vertex trigger
  - run  $p_{\overline{p}} = 5.4 \text{ GeV}/c (2m_{\Omega} < \sqrt{s} < 2m_{\Omega} + m_{\Pi_0})$ @  $\mathcal{L} \sim 10^{32} \text{ cm}^{-2} \text{ s}^{-1} (10 \times \text{E835})$

 $\Rightarrow \sim 10^8 \Omega^- \overline{\Omega}^+/yr + \sim 10^{12}$  inclusive hyperon events!

#### What Can This Do?

- Observe many more  $\Sigma^+ \rightarrow p \mu^+ \mu^-$  events and confirm or refute SUSY interpretation
- Discover or limit  $\Omega^- \rightarrow \Xi^- \mu^+ \mu^-$  and confirm or refute SUSY interpretation Predicted  $\mathcal{B} \sim 10^{-6}$
- Discover or limit *CP* violation in  $\Omega^- \to \Lambda K^$ and  $\Omega^- \to \Xi^0 \pi^-$  via partial-rate asymmetries

Predicted  $\Delta \mathcal{B} \sim 10^{-5}$ in SM,  $\leq 10^{-3}$  if NP if  $P^0$  real

#### What Else Can This Do?

- Much interest lately in new states observed in charmonium region: X(3872), X(3940), Y(3940), Y(4260), and Z(3930)
- X(3872) of particular interest b/c may be the first hadron-antihadron ( $D^0 \overline{D}^{*0}$  + c.c.) molecule



• Belle, Aug. 2003:  $B^{\pm} \longrightarrow X + K^{\pm}, X \longrightarrow J/\psi \pi^{+}\pi^{-}$ 



- Since confirmed by CDF, D0, & BaBar
- Not consistent with being charmonium state
- Very near  $D^0 \overline{D}^{*0}$  threshold ( $\Delta mc^2 = 0.6 \pm 0.6$  MeV)

#### What Else Can This Do?

- Much interest lately in new states observed in charmonium region: X(3872), X(3940), Y(3940), Y(4260), and Z(3930)
- X(3872) of particular interest b/c may be the first hadron-antihadron ( $D^0 \overline{D}^{*0}$  + c.c.) molecule
  - need very precise mass measurement to confirm or refute
  - $\Rightarrow \overline{p}p \rightarrow X(3872)$  formation *ideal* for this

# What Else Can This Do?

Also,...

- Study other X, Y, Z states
- Worthwhile measurements that E835 could have made but didn't...

(lack of beam time for precision scans when one didn't know exactly where to look)

- $h_c$  mass & width,  $\chi_c$  radiative-decay angular distributions,  $\eta_c'$  full and radiative widths,...
- ...improved limits on p
   lifetime and branching ratios (APEX),...

#### Example: *h*<sub>c</sub>

- $h_c$  ( $|P_l$ ) state of charmonium only way to study  $c\bar{c}$ spin-0 hyperfine splitting:  $m(|P_l) - \langle m_{spin-weighted}({}^{3}P_{J}) \rangle$
- Not experimentally accessible in strangeonium or (so far) bottomonium
- Splitting predicted to be  $\leq I$  MeV in potential models if
  - confinement potential has no vector component and
  - coupled-channel effects small

(both expected to be true)

• But  $h_c$  production in  $e^+e^-$  suppressed  $\Rightarrow$  not easy

#### Example: *h*<sub>c</sub>

- $h_c$  found ( $\approx 3\sigma$ ) in  $J/\psi \pi^0$  in E760 (E835 predecessor):
- Not confirmed by E835, but seen in  $\eta_c \gamma$ :





#### Example: *h*<sub>c</sub>

- Desirable to confirm E835 meas't with greater statistics!
- Not so easy!

small BR( $\eta_c \rightarrow \gamma \gamma$ ) = (2.8 ± 0.9) × 10<sup>-4</sup>

- cuts to suppress  $\pi^0$  bkg gave  $\approx 3\%$  efficiency in E835
- More-favorable modes?

 $\begin{array}{ll} \eta'(958) \pi \pi & (4.1 \pm 1.7) \% \\ K^*(892) \overline{K}^*(892) & (9.2 \pm 3.4) \times 10^{-3} \\ K^{*0} \overline{K}^{*0} \pi^+ \pi^- & (1.5 \pm 0.8) \% \\ \phi K^+ K^- & (2.9 \pm 1.4) \times 10^{-3} \\ \phi \phi & (2.7 \pm 0.9) \times 10^{-3} \end{array}$ 

Require magnetic spectrometer

D. M. Kaplan, IIT

### How to Magnetize?

- Is minimum-cost solution (E835 Pb glass) compatible with magnetic spectrometer?
  - insert small solenoid with SciFi & SiPix?



- use bucking coil to suppress field at PMTs?
- But EM calorimetry works better inside solenoid
  - $\exists$  suitable solenoid?
    - AP50 pit too small for most solenoids, but DØ one fits











#### **Apparatus Considerations**

- For  $\mathcal{L} \sim 10^{32}$ , need fast calorimeter
  - new PbWO<sub>4</sub> barrel? (~M\$?)
  - with new solenoid? (~\$IM?)
- How trigger & DAQ?
  - charmonium requires calorimetric trigger
  - hyperons require separated-vtx trigger
  - **-** ΦΦ etc.: wide-angle trigger?
  - rates low w.r.t. BTeV



### Is There an Interested **Collaboration**?

#### I am drafting LoI and soliciting collaborators

Thomas J. Phillips Duke University, Durham, N. Carolina 27708 USA

Giorgio Apollinari, Daniel R. Broemmelsiek, Charles N. Brown, David C. Christian, Paul Derwent, Keith Gollwitzer, Alan Hahn, Vaia Papadimitriou, Steven Werkema, Herman B. White Fermilab, Batavia, IL 60510, USA

> Wander Baldini, Giulio Stancari, Michelle Stancari INFN, Sezione di Ferrara, Ferrara, Italy

Gerald P. Jackson Hbar Technologies, LLC, West Chicago, IL 60185, USA

Daniel M. Kaplan, Howard A. Rubin, Yagmur Torun, Christopher G. White Illinois Institute of Technology, Chicago, Illinois 60616, USA ...& growing...

Todd K. Pedlar Luther College, Decorah, IA 52101, USA

(also interest @ Jerome Rosen Northwestern University, Evanston, IL 60208, USA

E. Craig Dukes branches &c...)<sub>University of Virginia, Charlottesville, Virginia 22903, USA</sub>

D. M. Kaplan, IIT

other INFN

• So far:

FNAL-pbar Lol Meeting

10 May 2007 35

### Summary

- Best experiment ever on hyperons and charmonia may be feasible a few years from now at Fermilab
- Measurements complementary to, & not feasible at, LHC
- May be possible to "scoop" GSI by several years & exceed their sensitivity via focused program
- Modest effort could yield substantial impact

## Some Open Questions

- Are inclusive hyperons efficiently reconstructed at ≈5.4 GeV/c?
- How reliable is "rule-of-thumb"  $\sigma(\Omega\overline{\Omega})$  estimate?
  - MIPP could test this
- Is  $\overline{p}p \rightarrow \psi(3770) \rightarrow D\overline{D}$  possibly competitive?
- How optimize sensitivity to physics of interest?
  - need targeted program of simulations and cost estimates
- Aim for proposal within ≈ a year

D. M. Kaplan, IIT