

Introduction

Daniel M. Kaplan

Transforming Lives.Inventing the Future.**www.iit.edu**

Antiproton Physics at the Intensity Frontier Fermilab Nov. 18, 2011

Outline

- Lab situation
- Antiproton Sources
- Charm CPV
- A new experiment
- Conclusions

Lab Situation

- Tevatron has been surpassed in energy and shut down
- Lab budget cut, staff reduced
- Deficit cutters "driving the train" in Washington
- \Rightarrow To keep Lab open,

Must exploit Fermilab features that make it unique!

...and use them to do compelling physics

D. M. Kaplan, IIT

What makes Fermilab unique?

- Medium-energy, high-intensity neutrino beam
- Low-energy, high-intensity neutrino beam
- Long-baseline neutrino experiments

and

➡ World's best antiproton source!

World's best antiproton source!

Antiproton Sources

• Fermilab Antiproton Source is world's highest-energy

• And most intense:

Table 1: Antiproton energies and intensities at existing and future facilities.

	\overline{p}	Stacking:		Operation:		
Facility	Kinetic Energy	Rate	Duty	Hours	\overline{p}/Yr	
	$({ m GeV})$	$(10^{10}/{\rm hr})$	Factor	/Yr	(10^{13})	
CERN AD	$0.005 \\ 0.047$	_	_	3800	0.4	
Fermilab Accumulator:						
Tevatron Collider	8	> 25	90%	5550	> 150	
proposed	$\approx 3.5 - 8$	20	15%	5550	17	
FAIR $(\gtrsim 2018^*)$	1-14	3.5	$15\%^*$	2780^{*}	1.5	

••• even after (≈ IG€) FAIR@Darmstadt turns on

What compelling physics can it do?

D. M. Kaplan, IIT

Non-KM CP Violation

- 5 places to search for new sources of CPV:
 - Years of intensive new-physics searches have so far come up empty* - Kaons - B mesons Worth looking elsewhere as well!
 - HyperonsCharm

 - Neutrinos

*except for possible DØ 3.9 σ dimuon signal

Concentrate on Charm for Now

D. M. Kaplan, IIT

Can \overline{p} expt confirm D^0 CPV?

How big is charm cross section in 8 GeV pp annihilation?

D. M. Kaplan, IIT

Antiproton Physics at the Intensity Frontier

PHYSICAL REVIEW D 77, 034019 (2008)

Estimate of the partial width for X(3872) into $p\bar{p}$

Eric Braaten

Physics Department, Ohio State University, Columbus, Ohio 43210, USA (Received 13 November 2007; published 25 February 2008)

We present an estimate of the partial width of X(3872) into $p\bar{p}$ under the assumption that it is a weakly bound hadronic molecule whose constituents are a superposition of the charm mesons $D^{*0}\bar{D}^0$ and $D^0\bar{D}^{*0}$. The $p\bar{p}$ partial width of X is therefore related to the cross section for $p\bar{p} \rightarrow D^{*0}\bar{D}^0$ near the threshold. That cross section at an energy well above the threshold is estimated by scaling the measured cross section for $p\bar{p} \rightarrow K^{*-}K^+$. It is extrapolated to the $D^{*0}\bar{D}^0$ threshold by taking into account the threshold resonance in the 1⁺⁺ channel. The resulting prediction for the $p\bar{p}$ partial width of X(3872) is proportional to the square root of its binding energy. For the current central value of the binding energy, the estimated partial width into $p\bar{p}$ is comparable to that of the P-wave charmonium state χ_{c1} . E. Braaten estimate of pp X(3872) coupling assuming X is D*D molecule

extrapolates from
 K*K data

Antiproton Physics at the Intensity Frontier

PHYSICAL REVIEW D 77, 034019 (2008)

Estimate of the partial width for X(3872) into $p\bar{p}$

- E. Braaten estimate of pp X(3872) coupling assuming X is D*D molecule
- extrapolates from K*K data
- By-product is D*⁰D⁰
 cross section

D. M. Kaplan, IIT

Antiproton Physics at the Intensity Frontier

• Another approach (Regge model)

A. I. Titov and B. Kämpfer, Phys. Rev. C **78**, 025201 (2008)

A. Titov, private communication

• Agreement within factor of 6

✓ not bad, considering it's low-energy QCD...

D. M. Kaplan, IIT

Antiproton Physics at the Intensity Frontier

(SVD-2 Collaboration)

A. Aleev, V. Balandin, N. Furmanec, V. Kireev, G. Lanshikov, Yu. Petukhov, T. Topuria, A. Yukaev. Joint Institute for Nuclear Research, Dubna, Russia

E. Ardashev, A. Afonin, M. Bogolyubsky, S. Golovnia, S. Gorokhov, V. Golovkin, A. Kholodenko, A. Kiriakov, V. Konstantinov, L. Kurchaninov, G. Mitrofanov, V. Petrov, A. Pleskach, V. Riadovikov*, V. Ronjin, V. Senko, N. Shalanda, M. Soldatov, Yu. Tsyupa, A. Vorobiev, V. Yakimchuk, V. Zapolsky. *Institute for High Energy Physics, Protvino, Russia**

S. Basiladze, S. Berezhnev, G. Bogdanova, V. Ejov, G. Ermakov, P. Ermolov, N. Grishin, Ya. Grishkevich, D. Karmanov, V. Kramarenko, A. Kubarovsky, A. Leflat, S. Lyutov, M. Merkin, V. Popov, D. Savrina, L. Tikhonova, A. Vischnevskaya, V. Volkov, A. Voronin, S. Zotkin, D. Zotkin, E. Zverev. D.V. Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia

The results of data handling for SERP-E-184 experiment obtained with 70 GeV proton beam irradiation of active target with carbon, silicon and lead plates are presented. Two-prongs neutral charmed D^0 and \bar{D}^0 -mesons decays were selected. Signal / background ratio is (51±17) / (38±13). Registration efficiency for mesons was defined and evaluation for charm production cross section at threshold energy is presented: $\sigma(c\bar{c}) = 7.1 \pm 2.4(stat.) \pm 1.4(syst.)$ (µb/nucleon).

18 Nov. 2011

13

Hard to predict size of 8 GeV p cross section

\Rightarrow Need to measure it!

p Charm Statistics

Ballpark sensitivity estimate based on Braaten $\overline{p}p \rightarrow D^{*0}\overline{D}^0$ formula, assuming $\sigma \propto A^{1.0}$ and $\mathcal{L} = 2 \times 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$:

	-	
Quantity	Value	Unit
Running time	2×10^7	s/yr
Duty factor	0.8^{*}	
\mathcal{L}	2×10^{32}	${\rm cm}^{-2}{\rm s}^{-1}$
Annual integrated \mathcal{L}	3.2	fb^{-1}
Target A (Ti)	47.9	
$A^{0.29}$	3.1 (base	ed on H.E. fixed-target
$\sigma(\overline{p}p \to D^{*+} + \text{anything})$	1.25 – 4.5	$\mu \mathrm{b}$
$\# D^{*\pm}$ produced	$(2.5-8.9) \times 10^{10}$	events/yr
$\mathcal{B}(D^{*+} \to D^0 \pi^+)$	0.	
${\cal B}(D^0 o K^- \pi^+)$	0.0	
Acceptance	0) <mark>ig</mark>	IC)
Efficiency	0.1 MI	bkg MC)
Total	$0.3 - 3 - 10^8$	tagged events/yr

But keep in mind: Main issue is systematics. Ours will be quite different from theirs, thus truly indep. Result x-check.

*Assumes $\approx 15\%$ of running time is devoted to antiproton-beam stacking.

• $3\frac{u}{u}30 \times 10^{7}$ tragged $K^{\mp}\Pi^{\pm} \Rightarrow 3^{u}_{s} 30 \times 10^{6}$ $K^{+}K^{-}, 1-10 \times 10^{6}$ $\Pi^{+}\Pi^{-}$ $\Rightarrow \epsilon$).17 to 0 $\Rightarrow \epsilon$).17 to 0 HCb: [-0.82 21(stat.) $\pm 0.11(sys.)]\%$ D. M. Kaplan, IIT u u D htiproton Physics at the Intensity Frontier I8 Nov. 2011 14

AP Sector 50

MICRONIAVE CUTOFF

SECTOR 50

D5Q14 D:IP513 _ D5B13

A:MS5B8 A:MS5B8

A5B

D5Q13

A508

05012

VTUAL VILALOWLEVEL VILANDOWLEVEL SILOWLEVEL

01 (8000 EV 11)

43B10

D5B15

D5Q15 D5B14

A5Q10

5B9

Antiproton Physics at the Intensity Frontier

DRELT

DSOD INSOR

N508

A4Q10

MOMSCRARHER

NC

A.MSABO

LGIDAOS LGIDAOS ININIO

DAU2 MIOS DI MICKER

DAQ2

DRELS

AP50 SERVICE BUILDING

D. M. Kaplan, IIT

ate

• TAPAS is <u>very</u> cost-effective (by HEP standards):

_			
-	Item	Cost (k\$)	Contingency (k\$)
-	Targets	430	160
	Luminosity monitor	60	20
ioure 7. The DØ	Scintillating-fiber tracking system	1.820	610
hown as currently	insigne-of-FlightØsystemers (from [68]).	500*	500
	Triggering	$1,\!390$	460
	Data acquisition ₅ system	490	153
	Infrastructure	$1,\!350$	550
-	TOTALS	6,040	2,450
-			

Thanks to: existing calorimeter, solenoid, SciFi readout system, trigger & DAQ electronics

D. M. Kaplan, IIT

Conclusions

 Fermilab pbar Source can confirm or refute LHCb signal for charm CPV long before super B factories

 $5 \times 10^{10} cc$

- The HEP world can't wait until \approx 2020 to do this
- Along with other topics to be discussed, can provide broad hadron-physics program at Fermilab while other expts under construction

...and while we wait for Project X