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Hyperon CP Violation
• An old topic:

Hyperon CP Violation?

• An old topic:
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• Example Feynman diagrams (SM):

Hyperon CP Violation

• “New physics” (SUSY, etc.) could also contribute!

Hyperon Direct CP Violation
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• Hyperon decay violates parity, as described by Lee & 
Yang (1957) via “α” and “β” parameters 

- e.g., decay of polarized Lambda hyperons:

Hyperon CP Violation

→nonuniform proton angular distribution in Λ rest frame 
 

dN
d!

=
1
4"
(1+#$

!
P$ % q̂p )

→

!" = 0.642 (±0.013) # p emitted preferentially along 
polarization (" spin) direction

☞ Large size of α looks favorable for CPV search!

   w.r.t. average spin direction PΛ

  - size of α indicates degree of nonuniformity:
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• Hyperon decay violates parity, as described by Lee & 
Yang (1957) via “α” and “β” parameters 

- e.g., decay of polarized Lambda hyperons:

Hyperon CP Violation
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→nonuniform proton angular distribution in Λ rest frame :
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• But, for precise measurement of AΛ, need excellent 
knowledge of relative Λ and Λ̅ polarizations!

! HyperCP “trick”: Ξ– → Λπ– decay gives PΛ = – PΛ̅

• Unequal slopes ⇒ CP violated!

Hyperon CP Violation

→ →
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• Differently sensitive to New Physics than B, K CPV

• Standard Model predicts small CP asymmetries in 
hyperon decay

• NP can amplify them by orders of magnitude:

Hyperon CP Violation

Table 5: Summary of predicted hyperon CP asymmetries.

Asymm. Mode SM NP Ref.
AΛ Λ→ pπ <∼ 10−5 <∼ 6× 10−4 [68]
AΞΛ Ξ∓ → Λπ, Λ→ pπ <∼ 0.5× 10−4 ≤ 1.9× 10−3 [69]
AΩΛ Ω→ ΛK, Λ→ pπ ≤ 4× 10−5 ≤ 8× 10−3 [36]
∆Ξπ Ω→ Ξ0π 2× 10−5 ≤ 2× 10−4 ∗ [35]
∆ΛK Ω→ ΛK ≤ 1× 10−5 ≤ 1× 10−3 [36]

∗
Once they are taken into account, large final-state interactions may increase this prediction [56].

Tandean and Valencia [35] have estimated ∆Ξπ ≈ 2 × 10−5 in the standard model but
possibly an order of magnitude larger with new-physics contributions. Tandean [36] has
estimated ∆ΛK to be ≤ 1 × 10−5 in the standard model but possibly as large as 1 × 10−3

if new physics contributes. (The large sensitivity of ∆ΛK to new physics in this analysis
arises from chromomagnetic penguin operators and final-state interactions via Ω → Ξπ →
ΛK [36].6) It is worth noting that these potentially large asymmetries arise from parity-
conserving interactions and hence are limited by constraints from �K ; they are independent
of AΛ and AΞ, which arise from the interference of parity-violating and parity-conserving
processes [56]. Table 5 summarizes predicted hyperon CP asymmetries.

Of course, the experimental sensitivities will include systematic components whose esti-
mation will require careful and detailed simulation studies, beyond the scope of this Letter
of Intent. Nevertheless, the potential power of the technique is apparent.

3.3 Study of FCNC hyperon decays

In addition to its high-rate charged-particle spectrometer, HyperCP had a muon detection
system aimed at studying rare decays of hyperons and charged kaons [45, 57, 5]. Among
recent HyperCP results is the observation of the rarest hyperon decay ever, Σ+ → pµ+µ− [5].
As shown in Figs. 5 and 6, based on the 3 observed events, the decay is consistent with being
two-body, i.e., Σ+ → pX0, X0 → µ+µ−, with X0 mass mX0 = 214.3 ± 0.5 MeV/c2. At
the current level of statistics this interpretation is of course not definitive: the probability
that the 3 signal events are consistent with the form-factor decay spectrum of Fig. 6a is
estimated at 0.8%. The measured branching ratio is [3.1 ± 2.4 (stat) ± 1.5 (syst)] × 10−8

assuming the intermediate Σ+ → pX0 two-body decay, or [8.6+6.6
−5.4 (stat)± 5.5 (syst)]× 10−8

assuming three-body Σ+ decay.
This result is particularly intriguing in view of the proposal by D. S. Gorbunov and

co-workers [58] that there should exist in certain nonminimal supersymmetric models a pair
of “sgoldstinos” (supersymmetric partners of Goldstone fermions). These can be scalar or
pseudoscalar and could be low in mass. A light scalar particle coupling to hadronic matter
and to muon pairs at the required level is ruled out by the failure to observe it in kaon decays;
however, a pseudoscalar sgoldstino with ≈ 214 MeV/c2 mass would be consistent with all
available data [59, 60, 61]. An alternative possibility has recently been advanced by He,
Tandean, and Valencia [62]: the X0 could be the light pseudoscalar Higgs boson in the next-

6
Large final-state interactions of this sort should also affect ∆Ξπ but were not included in that predic-

tion [35, 56].
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☞ Small sizes of (A,∆)SM favorable for NP CPV search!
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Hyperon CP Violation
• Measurement history:

Theory & Experiment

Theory

• SM: A
!
 ~ 10–5

• Other models: can be O(10–3)
[e.g. SUSY gluonic dipole: X.-G.He et al., PRD 61, 071701 (2000)]

(A
!
 sensitive to parity-even operators, "#!" to parity-odd)

  0.006 0.015 

"""" E871 at Fermilab $ ! !% %& &, p ''''2 ####""""10
–4

(HyperCP)

(0.0 ± 6.7)    10#### –4

[K.B. Luk et al., PRL 85, 4860 (2000)] 

[projected] 

[T. Holmstrom et al., 
PRL 93. 262001 (2004)] 

''''2    10####
–4

[P. Chauvat et al., PL 163B (1985) 273] 

[M.H. Tixier et al., PL B212 (1988) 523]

[P.D. Barnes et al., NP B 56A (1997) 46] 

E871 at Fermilab

(-6 ± 2 ± 2) ! 10–4  [BEACH08 preliminary; PRL in prep]
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Previous Measurements
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sensitivity to test theory

HyperCP probes well into
regions where BSM
theories predict nonzero
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Results (from farm histos):Enormous HyperCP DatasetMade possible by...
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Σ+→pµ+µ– Decay

Figure 4(a) compares the dimuon mass distribution of
the three signal candidates with that expected in the SM
with the form factors described below. The reconstructed
dimuon masses for the three candidates, 214.7, 214.3, and
213:7 MeV=c2, all lie within the expected dimuon mass
resolution of ! 0:5 MeV=c2. The dimuon mass distribu-
tion for !"

p!! decays is expected to be broad unless the
form factor has a pole in the kinematically allowed range
of dimuon mass.

The expected SM distribution was used to estimate the
probability that the dimuon masses of the three signal
candidates be within 1 MeV=c2 of each other anywhere
within the kinematically allowed range. The probability is
0.8% for the form-factor decay model and 0.7% for the
uniform phase-space decay model. The unexpectedly nar-
row dimuon mass distribution suggests a two-body decay,
!" ! pP0; P0 ! !"!# (!"

pP!!), where P0 is an un-
known particle with mass 214:3$ 0:5 MeV=c2. The di-
muon mass distribution for the three signal candidates is
compared with MC !"

pP!! decays in Fig. 4(b), and good
agreement is found. Distributions of hit positions and
momenta of the proton, !", and !# of the three candidate
events were compared with MC distributions, and were
found to be consistent with both decay hypotheses.

To extract the !"
p!! branching ratio, the !" !

p"0;"0 ! e"e## (!"
pee#) decay was used as the normal-

ization mode, where the # was not detected. (HyperCP had
no # detectors.) The trigger for the !"

pee# events was the
Left-Right trigger prescaled by 100. The proton and two
unlike-sign electrons were required to come from a single
vertex, as were the three tracks of the signal mode.

The proton was selected to be the positively-charged
track with the greatest momentum, and the event was
discarded if the proton candidate did not have at least
66% of the total three-track momentum, as determined
by a MC simulation of !"

pee# decays. The reconstructed
mass for the 3" hypothesis was required to be outside
$10 MeV=c2 of the K" mass. The cuts on $2=ndf,
DCA, and the total momentum were the same as for the

signal mode. However, the decay vertex had to be more
than 168 cm downstream of the entrance of the vacuum
decay region and more than 32 cm upstream of its exit.
Since the # momentum was not measured, the x and y
positions of the !" trajectory at the target were determined
using only the three charged tracks, and those positions had
to be consistent with that expected from a MC simulation
of !"

pee# decays. To significantly reduce contamination
from photon-conversion events, the dielectron mass was
required to be between 50 and 100 MeV=c2. After appli-
cation of the above selection criteria, a total of 211 events
remained, as shown in Fig. 5. We performed a binned
maximum-likelihood fit for the mass distributions for
data and three MC samples: !"

pee# decays, K" ! """0,
"0 ! e"e## (K"

"ee#) decays, and uniform background.
From the fit, the number of observed !"

pee# decays was
Nobs

nor % 189:7$ 27:4 events, where the uncertainty is sta-
tistical. To extract the total number of normalization
events, values of &51:57$ 0:30'% and &1:198$ 0:032'%
were used, respectively, for the !" ! p"0 and "0 !
e"e## branching ratios [6].

The kinematic parameters for !" production at the
target were tuned to match the data and MC !"

pee# mo-
mentum distributions. The MC !"

pee# decays were gener-
ated using the decay model in Ref. [7] for "0 ! e"e##
("0

ee#) decays, and the "0 electromagnetic form-factor
parameter a % 0:032$ 0:004 was taken from Ref. [6].
After tuning of the parameters, comparisons of the distri-
butions of the MC events with the data for !"

pee# decays,
the decay vertex positions, momentum spectra, recon-
structed mass, hit positions of each charged particle, etc.
showed good agreement.

In the simulation of the !"
p!! decays, we used the form-

factor model of Bergström et al. [1], although we found
little difference between results using it and a uniform
phase-space decay model. The form-factor model uses

FIG. 4. Real (points) and MC (histogram) dimuon mass dis-
tributions for (a) !"

p!! MC events (arbitrary normalization) with
a form-factor decay (solid histogram) and uniform phase-space
decay (dashed histogram) model, and (b) !"

pP!! MC events
normalized to match the data.

FIG. 5. The reconstructed pe"e# mass distribution for the
normalization mode after all cuts. The histogram is the sum of
MC samples of !"

pee#, K"
"ee# decays and a uniform background,

where the relative amounts of each were determined by a fit, and
the number of MC events was normalized to match the number
of data events. The hatched area shows the main background
source (uniform background).

PRL 94, 021801 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
21 JANUARY 2005

021801-3

≈2.4σ fluctuation of SM? or

- SUSY Sgoldstino?

- SUSY light Higgs?

- other pseudo-
scalar or axial-
vector state?

HyperCP also → 1010 Σ+
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Figure 4(a) compares the dimuon mass distribution of
the three signal candidates with that expected in the SM
with the form factors described below. The reconstructed
dimuon masses for the three candidates, 214.7, 214.3, and
213:7 MeV=c2, all lie within the expected dimuon mass
resolution of ! 0:5 MeV=c2. The dimuon mass distribu-
tion for !"

p!! decays is expected to be broad unless the
form factor has a pole in the kinematically allowed range
of dimuon mass.

The expected SM distribution was used to estimate the
probability that the dimuon masses of the three signal
candidates be within 1 MeV=c2 of each other anywhere
within the kinematically allowed range. The probability is
0.8% for the form-factor decay model and 0.7% for the
uniform phase-space decay model. The unexpectedly nar-
row dimuon mass distribution suggests a two-body decay,
!" ! pP0; P0 ! !"!# (!"

pP!!), where P0 is an un-
known particle with mass 214:3$ 0:5 MeV=c2. The di-
muon mass distribution for the three signal candidates is
compared with MC !"

pP!! decays in Fig. 4(b), and good
agreement is found. Distributions of hit positions and
momenta of the proton, !", and !# of the three candidate
events were compared with MC distributions, and were
found to be consistent with both decay hypotheses.

To extract the !"
p!! branching ratio, the !" !

p"0;"0 ! e"e## (!"
pee#) decay was used as the normal-

ization mode, where the # was not detected. (HyperCP had
no # detectors.) The trigger for the !"

pee# events was the
Left-Right trigger prescaled by 100. The proton and two
unlike-sign electrons were required to come from a single
vertex, as were the three tracks of the signal mode.

The proton was selected to be the positively-charged
track with the greatest momentum, and the event was
discarded if the proton candidate did not have at least
66% of the total three-track momentum, as determined
by a MC simulation of !"

pee# decays. The reconstructed
mass for the 3" hypothesis was required to be outside
$10 MeV=c2 of the K" mass. The cuts on $2=ndf,
DCA, and the total momentum were the same as for the

signal mode. However, the decay vertex had to be more
than 168 cm downstream of the entrance of the vacuum
decay region and more than 32 cm upstream of its exit.
Since the # momentum was not measured, the x and y
positions of the !" trajectory at the target were determined
using only the three charged tracks, and those positions had
to be consistent with that expected from a MC simulation
of !"

pee# decays. To significantly reduce contamination
from photon-conversion events, the dielectron mass was
required to be between 50 and 100 MeV=c2. After appli-
cation of the above selection criteria, a total of 211 events
remained, as shown in Fig. 5. We performed a binned
maximum-likelihood fit for the mass distributions for
data and three MC samples: !"

pee# decays, K" ! """0,
"0 ! e"e## (K"

"ee#) decays, and uniform background.
From the fit, the number of observed !"

pee# decays was
Nobs

nor % 189:7$ 27:4 events, where the uncertainty is sta-
tistical. To extract the total number of normalization
events, values of &51:57$ 0:30'% and &1:198$ 0:032'%
were used, respectively, for the !" ! p"0 and "0 !
e"e## branching ratios [6].

The kinematic parameters for !" production at the
target were tuned to match the data and MC !"

pee# mo-
mentum distributions. The MC !"

pee# decays were gener-
ated using the decay model in Ref. [7] for "0 ! e"e##
("0

ee#) decays, and the "0 electromagnetic form-factor
parameter a % 0:032$ 0:004 was taken from Ref. [6].
After tuning of the parameters, comparisons of the distri-
butions of the MC events with the data for !"

pee# decays,
the decay vertex positions, momentum spectra, recon-
structed mass, hit positions of each charged particle, etc.
showed good agreement.

In the simulation of the !"
p!! decays, we used the form-

factor model of Bergström et al. [1], although we found
little difference between results using it and a uniform
phase-space decay model. The form-factor model uses

FIG. 4. Real (points) and MC (histogram) dimuon mass dis-
tributions for (a) !"

p!! MC events (arbitrary normalization) with
a form-factor decay (solid histogram) and uniform phase-space
decay (dashed histogram) model, and (b) !"

pP!! MC events
normalized to match the data.

FIG. 5. The reconstructed pe"e# mass distribution for the
normalization mode after all cuts. The histogram is the sum of
MC samples of !"

pee#, K"
"ee# decays and a uniform background,

where the relative amounts of each were determined by a fit, and
the number of MC events was normalized to match the number
of data events. The hatched area shows the main background
source (uniform background).

PRL 94, 021801 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
21 JANUARY 2005

021801-3

Does the HyperCP Evidence for the Decay !! ! p!!!" Indicate
a Light Pseudoscalar Higgs Boson?
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The HyperCP Collaboration has observed three events for the decay !! ! p!!!" which may be
interpreted as a new particle of mass 214.3 MeV. However, existing data from kaon and B-meson decays
provide stringent constraints on the construction of models that support this interpretation. In this Letter
we show that the ‘‘HyperCP particle’’ can be identified with the light pseudoscalar Higgs boson in the
next-to-minimal supersymmetric standard model, the A0

1. In this model there are regions of parameter
space where the A0

1 can satisfy all the existing constraints from kaon and B-meson decays and mediate
!! ! p!!!" at a level consistent with the HyperCP observation.

DOI: 10.1103/PhysRevLett.98.081802 PACS numbers: 14.80.Cp, 12.60.Jv, 13.30.Ce, 14.20.Jn

Three events for the decay mode !! ! p!!!" with a
dimuon invariant mass of 214.3 MeV have been recently
observed by the HyperCP Collaboration [1]. It is possible
to account for these events within the standard model (SM)
[2], but the probability of having all three events at the
same dimuon mass, given the SM predictions, is less than
1%. This suggests a new-particle interpretation for these
events, for which the branching ratio is #3:1!2:4

"1:9 $ 1:5% &
10"8 [1].

The existence of a new particle with such a low mass
would be remarkable as it would signal the existence of
physics beyond the SM unambiguously. It would also be
very surprising because this low-energy region has been
thoroughly explored by earlier experiments studying kaon
and B-meson decays. The challenge posed by a new-
particle interpretation of the HyperCP events is therefore
manifold. It requires a new-physics model containing a
suitable candidate for the new particle, X, which explains
why it is light. It also requires an explanation of why X has
not been observed by other experiments that covered the
same kinematic range. Finally, it requires that the interac-
tions of X produce the rate implied by the HyperCP
observation.

In this Letter we show that there is a model, the next-to-
minimal supersymmetric standard model (NMSSM) [3],
containing a light pseudoscalar Higgs particle that can
satisfy all existing constraints and is therefore a candidate
explanation for the HyperCP events. The model contains
more than one Higgs particle, and it is the lightest one, the
A0
1, that can be identified with X.
The possibility that X mediated the HyperCP events has

been explored to some extent in the literature [4–6], where
it has been shown that kaon decays place severe constraints
on the flavor-changing two-quark couplings of X. It has

also been shown [7] that a light sgoldstino is a viable
candidate for X. It is well known in the case of light
Higgs boson production in kaon decay that, in addition to
the two-quark flavor-changing couplings, there are com-
parable four-quark contributions [8]. They arise from the
combined effects of the usual SM four-quark j"Sj ' 1
operators and the flavor-conserving couplings of X. We
have recently computed the analogous four-quark contri-
butions to light Higgs production in hyperon decay [9] and
found that they can also be comparable to the two-quark
contributions previously discussed in the literature.

The interplay between the two- and four-quark contri-
butions makes it possible to find models with a light Higgs
boson responsible for the HyperCP events that has not
been observed in kaon or B-meson decay. However, it is
not easy to devise such models respecting all the experi-
mental constraints. In most models that can generate #dsX
couplings, the two-quark operators have the structure
#d#1$ "5%sX. Since the part without "5 contributes sig-
nificantly to K ! #!!!", their data imply that these
couplings are too small to account for the HyperCP events
[4–6]. In some models, there may be parameter space
where the four-quark contributions mentioned above and
the two-quark ones are comparable and cancel sufficiently
to lead to suppressed K ! #!!!" rates while yielding
!! ! p!!!" rates within the required bounds.
However, since in many models the flavor-changing two-
quark couplings #qq0X are related for different #q; q0% sets,
experimental data on B-meson decays, in particular, B !
Xs!!!", also provide stringent constraints. For these
reasons, the light (pseudo)scalars in many well-known
models, such as the SM and the two-Higgs-doublet model,
are ruled out as candidates to explain the HyperCP events
[9].

PRL 98, 081802 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
23 FEBRUARY 2007
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Figure 6: E835 apparatus layout (from [67]).

Figure 7: The DØ solenoid and central tracking system, drawn to the same scale as Fig. 6,
shown as currently installed within the DØ calorimeters (from [68]).
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Our proposal:

• Now that Tevatron finished,

- Reinstall E760 barrel calorimeter

- Run pp ̅ = 5.4 GeV/c (2mΩ < √ s ̅ < 2mΩ + mπ0) 
@ � ~ 1032 cm-2 s-1 

}<$10M

(10 ! E835)

+ ~1012 inclusive hyperon events!! ~108 Ω" Ω̅+/yr 

Flux Return

- Add small magnetic spectrometer 

- Add precision TOF system

- Add thin targets

- Add fast trigger & DAQ systems

+ possibly ~1010 Ξ– Ξ̅+

[existing BESS 
magnet from 
KEK &
SciFi DAQ
from DØ               &
FNAL iron]

12

TAPAS
(The AntiProton Annihilation 

Specrometer)

2.63 m

~
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What Can This Do?

 

!+ " pµ +µ#• Observe many more                      events and 
confirm or refute new-physics interpretation

• Discover or limit CP violation in                 
and                 #  via partial-rate asymmetries               

 

!" #$0% "

 

!" #$K "

• Discover or limit                        and confirm or 
refute new-physics interpretation

 

!" #$"µ +µ"

Predicted B ~10–6 
if P0 real

Predicted ∆B/B ~10–5 
in SM, ~10–3 if NP <

13

• Observe ~ 1010 Ξ̅+Ξ– pairs, measure both AΞΛ and
BΞ, and extract AΞ and AΛ, with 10–4 precision*

*if deceleration through transition solved
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• Also good for “charmonium” 
(cc! QCD “hydrogen atom”):

‣ Fermilab E760/835 used 
Antiproton Accumulator for 
precise (~<100 keV) 
measurements of charmonium 
parameters, e.g.:

- best measurements of 
!c, "c, hc masses, widths, 
branching ratios,...

14

What Can This Do?
Else

^

‣ p !p produces all cc! quantum states (not just 1– –), unlike e+e–
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• Much interest lately in new states observed in 
charmonium region:  X(3872), X(3940), Y(3940), 
Y(4260), and Z(3930)

! need very precise mass measurement to 
confirm or refute

! pp → X(3872) formation ideal for this...

• X(3872) of particular interest because it may be 
the first meson-antimeson (D0 D̅*0 + c.c.) molecule

What Can This Do?
Else

^

15
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• The beam is the spectrometer!

• The experiment is just the detector.

Example: precision p ̅p mass 
& width measurements

E760 $c scans                σm (beam) = 0.5 MeV/c2

δm($c) ≈ 0.1±0.02 MeV/c2

 δΓ($c) ≈ 0.1±0.01 MeV/c2→{

16
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• Much interest lately in new states observed in 
charmonium region:  X(3872), X(3940), Y(3940), 
Y(4260), and Z(3930)

! need very precise mass measurement to 
confirm or refute

! pp → X(3872) formation ideal for this...

• X(3872) of particular interest because it may be 
the first meson-antimeson (D0 D̅*0 + c.c.) molecule

What Can This Do?

• Plus other XYZ, charmonium measurements, etc...

Else
^

17
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What Else?
• QCD tests:

- event shapes and distributions

- intrinsic charm qq ! component in the nucleon?

• Search for new, exotic states of matter:

- pentaquarks, gluonic hybrids, etc.

• Target-A dependence:

- possible calibration for heavy-ion effects

• Drell-Yan electron-positron pair production:  

- can signal be distinguished from background?

18
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• l+l– invariant-mass and momentum distributions 
sensitive to quark and antiquark distributions inside 
colliding protons and neutrons

• Global fits of nucleon structure suffer from significant 
tension among datasets

• p !p or p !A Drell-Yan can potentially add new 
constraints with very different systematics

‣ “valence-valence” quark-antiquark annihilation

!Can signal be dug out of the background???
19

p !p Drell-Yan
q
q !

l–
l+
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Compare signal with 
main backgrounds

• Low energy is 
advantageous:

! less charm 
background

! fewer pions to 
confuse

! allows measurement 
in new kinematic 
region

20

p !p Drell-Yan
dσ

/d
m

 (
nb

/G
eV

)

m (GeV)

D-Ycharm

π/e mis-ID
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• Medium Energy p ! Drell-Yan also studies

1. Lam-Tung-relation violation in πN DY

2. Boer-Mulders (quark spin–pt correlation) function

3. Weinberg angle (NuTeV anomaly) via FB asymmetry

4. Threshold resummation (important for JLab as well 
as intrinsically interesting)

21

p !p Drell-Yan
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Breadth of Program
• Partial list of physics papers/thesis topics:

22

GeneralGeneral

1 Particle multiplicities in medium-energy pbar-p collisions

2 Particle multiplicities in medium-energy pbar-N collisions

3 Total cross section for medium-energy pbar-p collisions

4 Total cross section for medium-energy pbar-N collisions

CharmCharm

5 Production of charm in medium-energy pbar-p collisions

6 Production of charm in medium-energy pbar-N collisions

7 A-dependence of charm production in medium-energy pbar-N collisions

8 Associated production of charm baryons in medium-energy pbar-N collisions

9 Production of charm baryon-antibaryon pairs in medium-energy pbar-N collisions

10 Measurement of D0 mixing in medium-energy pbar-N collisions

11 Search for/Observation of CP violation in D0 mixing

12 Search for/Observation of CP violation in D0 decays

13 Search for/Observation of CP violation in charged-D decays

HyperonsHyperons

14 Production of Lambda hyperons in medium-energy pbar-p collisions

15 Production of Sigma0 in medium-energy pbar-p collisions

16 Production of Sigma- in medium-energy pbar-p collisions

17 Production of Xi- in medium-energy pbar-p collisions

18 Production of Xi0 in medium-energy pbar-p collisions

19 Production of Omega- in medium-energy pbar-p collisions

20 Production of Lambda Lambdabar pairs in medium-energy pbar-p collisions

21 Production of Sigma+ Sigmabar- pairs in medium-energy pbar-p collisions

22 Production of Xi- Xibar+ pairs in medium-energy pbar-p collisions

23 Production of Omega- Omegabar+ pairs in medium-energy pbar-p collisions

24 Rare decays of Sigma+

25 Rare decays of Xi-

26 Rare decays of Xi0

27 Rare decays of Omega-

28 Search for/Observation of CP violation in Omega- decay

CharmoniumCharmonium

29 Production of X(3872) in medium-energy pbar-p collisions

30 Precision measurement of X(3872) mass, lineshape, and width

31 Decay modes of X(3872)

32 Limits on rare decays of X(3872)

33 Production of other XYZ states in medium-energy pbar-p collisions

34 Precision measurement of the eta_c mass, line shape and width

35 Precision measurement of the h_c mass, line shape and width

36 Precision measurement of the eta_c' mass, line shape and width

37 Complementary scans of J/psi and psi'

38 Precise determination of the chi_c COG

39 Production of J/psi and Chi_cJ in association with pseudoscalar meson(s)

• TAPAS could maintain hadron physics at post-Tevatron 
Fermilab, multiplying physics output several-fold



D. M. Kaplan, IIT 18 Nov 2011Antiproton Physics at the Intensity Frontier

• Best experiment ever on hyperons, charmonia, and 
charm may soon be feasible at Fermilab

- possibly world’s most sensitive study of charm mixing, charm 
& hyperon CPV & rare decays, + unique p ! DY

• Existing equip’t enables quick, cost-effective effort

- could start data-taking by 2014

• Preserves options for antihydrogen experiments

- CPT, gravity tests

• World’s best p ̅ source offers simple way to broad 
physics program in pre-Project X era

Summary

23

! Can Oddone’s mind be changed? Can you help???
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Backup
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Figure 23: A VLPC cassette supporting AFE readout boards as viewed from the left side. The VLPC hybrids

are located on the isotherms housed inside the copper cup shown at the bottom of the figure. This figure was

published in Nuclear Instruments and Methods A, A565, V.M. Abazov et al., pg. 463-537, Copyright Elsevier

(2006).
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• MICE SciFi
Trackers 
with VLPC
readout

→≈ 85% Q.E.

25

Fine-Pitch Scintillating Fibers

Figure 22: Observed photoelectron yield in MICE tracker cosmic-ray tests.

Figure 23: (left) CAD drawing of MICE tracker support frame, showing five carbon-fiber
station support bodies mounted on space frame; (right) photo of carbon-fiber station sup-
port body.

a significantly smaller channel count and represents less material in the path of the parti-
cles. Its disadvantages include coarser position resolution of each measured point (typically
≈ 100–200 µm, compared to 250µm/

√
12 ≈ 70 µm for the SciFi option) and the tens-of-

microseconds memory time which, at the ≈ 10 MHz interaction rate at which we propose
to run, would mean that multiple interactions are typically piled up in each “event.” Fi-
nally, in contrast to SciFi, which produce fast signals that can be used in the first-level
trigger, triggering information using a TPC could be derived only with a complicated on-
line track-finding system. However, this challenge is already being tackled by the PANDA
collaboration [119, 120], and we will use similar approaches if we decide to include a TPC
in our design.

The challenge for a TPC is the high rates of interactions (<∼ 10 MHz) and charged par-
ticles (<∼ 50 MHz, making some allowance for possible photon conversions in the beam pipe
etc.) in <∼ 8 GeV antiproton collisions at 2× 1032 cm−2s−1. While we are unaware of a TPC
of the needed dimensions that has been operated at such rates, the KABES detectors for the
NA-48/2 experiment constitute reduced-scale prototypes [121]. These feature Micromegas
readout, providing sufficient gain with suppressed ion feedback compared to traditional
multiwire avalanche detection. They were successfully operated at charged-particle rates
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• 11 p.e. from 
350 µm 
scintillating 
fiber

⇒ 240 µm 
feasible

Figure 22: Observed photoelectron yield in MICE tracker cosmic-ray tests.

Figure 23: (left) CAD drawing of MICE tracker support frame, showing five carbon-fiber
station support bodies mounted on space frame; (right) photo of carbon-fiber station sup-
port body.

a significantly smaller channel count and represents less material in the path of the parti-
cles. Its disadvantages include coarser position resolution of each measured point (typically
≈ 100–200 µm, compared to 250µm/

√
12 ≈ 70 µm for the SciFi option) and the tens-of-

microseconds memory time which, at the ≈ 10 MHz interaction rate at which we propose
to run, would mean that multiple interactions are typically piled up in each “event.” Fi-
nally, in contrast to SciFi, which produce fast signals that can be used in the first-level
trigger, triggering information using a TPC could be derived only with a complicated on-
line track-finding system. However, this challenge is already being tackled by the PANDA
collaboration [119, 120], and we will use similar approaches if we decide to include a TPC
in our design.

The challenge for a TPC is the high rates of interactions (<∼ 10 MHz) and charged par-
ticles (<∼ 50 MHz, making some allowance for possible photon conversions in the beam pipe
etc.) in <∼ 8 GeV antiproton collisions at 2× 1032 cm−2s−1. While we are unaware of a TPC
of the needed dimensions that has been operated at such rates, the KABES detectors for the
NA-48/2 experiment constitute reduced-scale prototypes [121]. These feature Micromegas
readout, providing sufficient gain with suppressed ion feedback compared to traditional
multiwire avalanche detection. They were successfully operated at charged-particle rates
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Figure 19: Photograph of assembled tracker showing the internal light guides being attached to the support

frame by which they are supported during the installation of the tracker into the bore of the solenoid. In the

picture, the tracker is being prepared for installation in the light-tight carbon-fibre tube used to house the tracker

in the cosmic ray test stand.

Figure 20: Tracker alignment mechanism. The lighter part shown will be dowelled to the spectrometer solenoid

end plate. At the narrow end of the part, inside the bore of the solenoid, a locking mechanism will be used to

locate the tracker in z and in azimuth.

position. The tracker will sit on four adjustable feet, two at each end. The adjustable feet will350

be used to align the tracker with the magnetic axis of the solenoid. Once this has been done,351

the location bracket will be fitted. The location bracket locks the tracker in its z and azimuthal352

positions (see figure 20).353
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11 photoelectrons/m.i.p.

Muon Ionization Cooling Experiment
Rutherford Appleton Lab, UK
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0th-order run-plan example:
install/debug ~3 mo

find X(3872) ~1 mo

measure σ(D*) ~1 mo

measure σ(ΩΩ̅) ~1 mo

charmonium ~3 mo

X(3872) run ~12 mo

hyperon CP run ~12 mo

install/debug hadron-ID upgrade ~3 mo

charm CP run ~12 mo } if σ’s favorable

26
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M. Drochnerb, W. Gasta, A. Gillitzera, D. Grzonkaa, V. Hejnya, G. Kemmerlingb, H. Kleinesb,

W. Oelerta, D. Prasuhna, J. Ritmana, S. Schadmanda, A. Sibirtseva, A. Sokolova, T. Stockmannsa,
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R. Birsa, F. Bradamante, S. Dalla Torre, M. Giorgi, A. Martin, P. Schiavon, F. Tessarotto

Physikalisches Institut, Universität Tübingen, Germany
H. Clement, E. Doroshkevitch, K. Ehrhardt, P. Gonser

The Svedberg Laboratory, Uppsala, Sweden
H. Calén, C. Ekström, K. Fransson, A. Kupsc, P. Marciniewski

Institutionen för Str̊alningsvetenskap, Uppsala Universitet, Sweden
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Figure 1.3: Setup of the PANDA detector.

• The interaction point is surrounded by a micro
vertex detector (MVD) which has five barrel
shaped layers plus five disk-shaped detectors in
forward direction. The three innermost layers
are composed of pixel detectors to achieve best
resolution and to be able to easily detect decay
vertices displaced from the interaction point.
The outer layers are composed of microstrip
detectors which are easier to handle.

The baseline technology chosen for the pixel
detectors are hybrid active pixel sensors as used
by several LHC experiments. The electronics
still has to be modified to accommodate contin-
uous readout. As alternatives to silicon pixels,
GaAs based detectors are considered as well as
much thinner monolithic pixel sensors where
the problem of radiation hardness would have
to be solved.

• The MVD is surrounded by a cylindrical
tracker. Two options are currently discussed,
a straw tube tracker (STT) consisting of 15
double layers of self-supporting straws and a
time projection chamber (TPC) with continu-
ous readout.

The TPC is the technically more challenging
option since it requires an ungated charge col-
lection based on a GEM readout. However it
has the benefit of less material and offers in
addition particle identification via dE/dx.

On the other hand, the STT is seen as a safe
fall-back solution which should still fulfil the
basic tracking requirements.

In the forward direction circular or octagonal
mini drift chambers are used to track particles
with higher momenta before they enter the for-
ward spectrometer.

• The next detector is a Cherenkov counter based
on the DIRC principle as used in BaBar at
SLAC. It consists of quartz rods in which
Cherenkov light is internally reflected to an ar-
ray of photon detectors in the backwards di-
rection. The readout can be either done by
imaging a 2D pattern of reflections with a large
number of PMTs or APDs or by measuring just
one coordinate and the time of light propaga-
tion inside the quartz very precisely.

In forward direction a disk-shaped Cherenkov
counter with quartz radiator and detectors for
internally reflected light similar as for the bar-
rel DIRC is planned. Its readout should be
located between the solenoid coil and the re-
turn yoke to allow the calorimeter end cap to
be as close as possible.

• An electromagnetic calorimeter is placed out-
side the DIRC. It consists of a barrel part with
11 360 crystals, a forward end cap with 6 864
crystals and a backward end cap with 816 crys-
tals. As detector material PbWO4 is foreseen,
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quantities for which predictions with dynamical quarks are now available, with that of the
corresponding “quenched” predictions.) The charmonium system (Fig. 7) is an important
proving ground for QCD calculations in that the bound c and c quarks are moving slowly
enough that relativistic effects are significant but not dominant, and are sufficiently massive
that non-perturbative effects are well understood.

Fermilab experiments E760 and E835 made the world’s most precise measurements of
charmonium masses and widths [10]. The achieved precision (<∼ 100 keV) was made possible
by the extraordinarily narrow energy spread of the stochastically cooled antiproton beam
and the absence of Fermi motion and negligible energy loss in the hydrogen cluster-jet target.
The other key advantage of the antiproton-annihilation technique is its ability to produce
charmonium states of all quantum numbers, in contrast to e+e− machines which produce
primarily 1−− states. Although charmonium has by now been extensively studied, a number
of questions remain, including the nature of the mysterious X(3872) state [6] and improved
measurement of hc and η�c parameters [9]. The unique precision of the pp energy-scan tech-
nique is ideally suited to making the precise mass and width measurements needed to test
the intriguing hypothesis that the X(3872) is a D∗0D0 molecule [41].
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• Charmonium (cc ̅) spectroscopy (mass, widths, branching ratios) 

• Establishment of the QCD-predicted gluonic excitations 
(charmed hybrids, glueballs) in the 3–5 GeV/c2 mass range

• Search for modifications of meson properties in the nuclear 
medium

• Precision γ-ray spectroscopy of single and double hypernuclei

• Extraction of generalized parton distributions from p ̅p 
annihilation

• D meson decay spectroscopy (rare decays)

• Search for CP violation in the charm and strangeness sector

P̅ANDA Physics Topics
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• MIPP D* –#D mass:

Background Study

mD* –#mD (GeV)

#
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s
All combinations
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• MIPP D* –#D mass:

Background Study

mD* –#mD (GeV)

#
 e

ve
nt

s
Combinations in 

D*,D mass windowSignal 
bin

• Only a few background events – with no kaon ID!
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Chuck Brown <chuckb@fnal.gov>
RE: Easy simulation?

March 4, 2009 11:17:04 AM CST

'Daniel Kaplan' <kaplan@iit.edu>

The answer is, for 20,000 D0 decays where Ebeam=8.937, the pi+K+pi are all
within .1<atan(theta)<1.0, and the vertex resolution is taken as 100 microns
for both the D and the 20,000 background events that have D->Kpi kinematics
but z=0.:

              Background remaining    D's remaining     ~ratio     D*,D
acceptance
No cut on z        10,000               10,000             1        50%
z>100 microns       1,589                7,106             4.5      35%
z>200 microns         238                5,168             22       25% 
z>300 microns          14                3,679             250      18%
z>400 microns           0                2,669             >1000    13%

- ChuckB

-----Original Message-----
From: Daniel Kaplan [mailto:kaplan@iit.edu] 
Sent: Tuesday, March 03, 2009 7:52 AM
To: Chuck Brown
Subject: Re: Easy simulation?

...or maybe it's a back-of-the-envelope theorem and no MC needed? I'll  
try to find time to work on this.

      Dan

On Mar 3, 2009, at 6:56 AM, Daniel Kaplan wrote:

Hi Chuck,

 Are you able to attend today's noon phone conference? Your input  
would be valuable!

 It occurs to me that it would be good to have a backup slide about  
the vertex cut efficiency and rejection. To first order, this is two  
very simple Monte Carlo calculations - generate a signal with an  
exponential lifetime distribution, folded with a 100-micron Gaussian  
resolution, and generate a background with a 100-micron Gaussian,  
then see what fractions survive various (1-sigma, 2-sigma, etc.) cuts.

D. M. Kaplan, IIT 18 Nov 2011Antiproton Physics at the Intensity Frontier

• MC comparison of D0 → Kπ signal & prompt background

Background Study

10,000 evts each vtx cut     #bkg           #sig       sig/bkg      D   
                                                              accept.  

(Based on 240 µm SciFi)
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Ξ± CP Violation
• Holmstrom et al., PRL 93, 26201 (2004):

- analysis of ≈5% of Ξ– sample, 10% of Ξ+

• C. Materniak, BEACH08:

After weighting events
to correct for unequal

production spectra, etc.:
δ(cosθ slope) = 0
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Table 1: IIT HEP personnel and effort percentages by project.

Name Position HyperCP MINOS DB DC Other

Kaplan Prof. 10 45 45 (MuCool/MICE)
Rubin Prof. 50 50
White Assoc. Prof. 10 30 60
de Jong Postdoc 100
Luebke Technician 25 75 (MICE)
Kamaev Grad. Res. Asst. 100
Seilhan Grad. Res. Asst. 100

3 Publications and Reports in 2006

3.1 Publications in 2006 with IIT HEP authors:
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Phys. Rev. Lett. 96, 242001 (2006).

• E. M. Aitala et al., “Model independent measurement of S-wave K−π+ systems using
D+ → Kππ decays,” Phys. Rev. D 73, 032004 (2006); Erratum ibid. 74, 059901 (2006).

• P. Adamson et al., “First observations of separated atmospheric νµ and νµ events in
the MINOS detector,” Phys. Rev. D 73, 072002 (2006).

• B. A. Cole et al., “Strangeness enhancement in p-A collisions: Consequences for the
interpretation of strangeness production in A-A collisions,” Phys. Lett. B 639, 210
(2006).

• R. P. Johnson et al., “Recent innovations in muon beam cooling,” Proceedings of the
COOL05 Workshop, ed. S. Nagaitsev, R. Pasquinelli, AIP Conf. Proc. 821, 405 (2006).

• D. M. Kaplan, “MICE: The International Muon Ionization Cooling Experiment,” Pro-
ceedings of the COOL05 Workshop, ed. S. Nagaitsev, R. Pasquinelli, AIP Conf. Proc.
821, 427 (2006).

• Y. Torun et al., “The Muon Cooling RF R&D Program,” Proceedings of the COOL05
Workshop, ed. S. Nagaitsev, R. Pasquinelli, AIP Conf. Proc. 821, 437 (2006).

• K. Yonehara et al., “Simulations of MANX: A practical six dimensional muon beam
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• Y. Torun, “Muon Cooling: MuCool and MICE,” Proceedings of the 7th International
Workshop on Neutrino Factories and Superbeams (NuFact 05), ed. G. De Lellis et al.,
Nucl. Phys. B (Proc. Sup.) 155, 381 (2006).
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[19] T. Araki et al. (KamLAND Collaboration), “Measurement of Neutrino Oscillation with
KamLAND: Evidence of Spectral Distortion,” Phys. Rev. Lett. 94, 081801 (2005).

[20] Y. Fukuda et al. (Super-Kamiokande Collaboration), Phys. Lett. B 433, 9 (1998); Phys.
Lett. B 436, 33 (1998); Phys. Rev. Lett. 81, 1562 (1998); Phys. Lett. B 467, 185 (1999);
Q. R. Ahmad et al. (SNO Collaboration), Phys. Rev. Lett. 87, 071301 (2001); ibid. 89,
011302 (2002);
K. Eguchi et al. (KamLAND Collaboration), ibid. 90, 021802 (2003).

[21] S. Weinberg, Phys. Rev. Lett. 43, 1566 (1979);
R. Barbieri, J. Ellis, and M. K. Gaillard, Phys. Lett. B 90, 249 (1980);
M. Gell-Mann, P. Ramond, and R. Slansky, Supergravity, ed. P. von Nieuwenhuizen and
D. Freedman (North Holland, 1979);
T. Yanagida, Proc. Workshop on Unified Theories and Baryon Number in the Universe,
ed. O. Sawada and A. Sugamoto, KEK, Japan (1979);
J. L. Chkareuli, I. G. Gogoladze, and A. B. Kobakhidze, Phys. Lett. B 484, 87 (2000).

[22] J. Schechter and J. W. F. Valle, Phys. Rev. D 25, 2951 (1982).

[23] D. Rajaram et al., “Search for the Lepton-Number-Violating Decay Ξ− → pµ−µ−,”
Phys. Rev. Lett. 94, 181801 (2005).

[24] S. Glashow, Phys. Rev. Lett. 6, 196 (1961).

[25] X. G. He and G. Valencia, Phys. Lett. B 409, 469 (1997); Erratum-ibid. 418, 443 (1998).

[26] S. Fajfer and P. Singer, Phys. Rev. D 62, 117702 (2000); Phys. Rev. D 65, 017301
(2002).

[27] C. G. White et al., “Search for Delta ∆S = 2 Nonleptonic Hyperon Decays,” Phys.
Rev. Lett. 94, 101804 (2005).

[28] See, e.g., G. Eilam et al., Phys. Rev. D 53, 3629 (1996).

[29] M. Bourquin et al., Nucl. Phys. B 241, 1 (1984).

[30] Based on R. Safadi and P. Singer, Phys. Rev. D 37, 697 (1988) [Erratum-ibid. 42, 1856
(1990)], using B = 1 ×10−4 for the radiative decay Ω− → Ξ−γ.

[31] H. K. Park et al., “Evidence for the Decay Σ+ → pµ+µ−,” Phys. Rev. Lett. 94, 021801
(2005).

[32] R. A. Burnstein et al., “HyperCP: A High-Rate Spectrometer for the Study of Charged
Hyperon and Kaon Decays,” Nucl. Instrum. Methods A 541, 516 (2005).

[33] M. Huang et al., “New Measurement of Ξ− → Λπ− Decay Parameters,” Phys. Rev.
Lett. 93, 011802 (2004);
M. J. Longo et al., “High-Statistics Search for the Θ+(1.54) Pentaquark,” Phys. Rev.
D 70, 111101(R) (2004);
T. Holmstrom et al., “Search for CP Violation in Charged-Ξ and Λ Hyperon Decays,”

41

[19] T. Araki et al. (KamLAND Collaboration), “Measurement of Neutrino Oscillation with
KamLAND: Evidence of Spectral Distortion,” Phys. Rev. Lett. 94, 081801 (2005).

[20] Y. Fukuda et al. (Super-Kamiokande Collaboration), Phys. Lett. B 433, 9 (1998); Phys.
Lett. B 436, 33 (1998); Phys. Rev. Lett. 81, 1562 (1998); Phys. Lett. B 467, 185 (1999);
Q. R. Ahmad et al. (SNO Collaboration), Phys. Rev. Lett. 87, 071301 (2001); ibid. 89,
011302 (2002);
K. Eguchi et al. (KamLAND Collaboration), ibid. 90, 021802 (2003).

[21] S. Weinberg, Phys. Rev. Lett. 43, 1566 (1979);
R. Barbieri, J. Ellis, and M. K. Gaillard, Phys. Lett. B 90, 249 (1980);
M. Gell-Mann, P. Ramond, and R. Slansky, Supergravity, ed. P. von Nieuwenhuizen and
D. Freedman (North Holland, 1979);
T. Yanagida, Proc. Workshop on Unified Theories and Baryon Number in the Universe,
ed. O. Sawada and A. Sugamoto, KEK, Japan (1979);
J. L. Chkareuli, I. G. Gogoladze, and A. B. Kobakhidze, Phys. Lett. B 484, 87 (2000).

[22] J. Schechter and J. W. F. Valle, Phys. Rev. D 25, 2951 (1982).

[23] D. Rajaram et al., “Search for the Lepton-Number-Violating Decay Ξ− → pµ−µ−,”
Phys. Rev. Lett. 94, 181801 (2005).

[24] S. Glashow, Phys. Rev. Lett. 6, 196 (1961).

[25] X. G. He and G. Valencia, Phys. Lett. B 409, 469 (1997); Erratum-ibid. 418, 443 (1998).

[26] S. Fajfer and P. Singer, Phys. Rev. D 62, 117702 (2000); Phys. Rev. D 65, 017301
(2002).

[27] C. G. White et al., “Search for Delta ∆S = 2 Nonleptonic Hyperon Decays,” Phys.
Rev. Lett. 94, 101804 (2005).

[28] See, e.g., G. Eilam et al., Phys. Rev. D 53, 3629 (1996).

[29] M. Bourquin et al., Nucl. Phys. B 241, 1 (1984).

[30] Based on R. Safadi and P. Singer, Phys. Rev. D 37, 697 (1988) [Erratum-ibid. 42, 1856
(1990)], using B = 1 ×10−4 for the radiative decay Ω− → Ξ−γ.

[31] H. K. Park et al., “Evidence for the Decay Σ+ → pµ+µ−,” Phys. Rev. Lett. 94, 021801
(2005).

[32] R. A. Burnstein et al., “HyperCP: A High-Rate Spectrometer for the Study of Charged
Hyperon and Kaon Decays,” Nucl. Instrum. Methods A 541, 516 (2005).

[33] M. Huang et al., “New Measurement of Ξ− → Λπ− Decay Parameters,” Phys. Rev.
Lett. 93, 011802 (2004);
M. J. Longo et al., “High-Statistics Search for the Θ+(1.54) Pentaquark,” Phys. Rev.
D 70, 111101(R) (2004);
T. Holmstrom et al., “Search for CP Violation in Charged-Ξ and Λ Hyperon Decays,”

41

[19] T. Araki et al. (KamLAND Collaboration), “Measurement of Neutrino Oscillation with
KamLAND: Evidence of Spectral Distortion,” Phys. Rev. Lett. 94, 081801 (2005).

[20] Y. Fukuda et al. (Super-Kamiokande Collaboration), Phys. Lett. B 433, 9 (1998); Phys.
Lett. B 436, 33 (1998); Phys. Rev. Lett. 81, 1562 (1998); Phys. Lett. B 467, 185 (1999);
Q. R. Ahmad et al. (SNO Collaboration), Phys. Rev. Lett. 87, 071301 (2001); ibid. 89,
011302 (2002);
K. Eguchi et al. (KamLAND Collaboration), ibid. 90, 021802 (2003).

[21] S. Weinberg, Phys. Rev. Lett. 43, 1566 (1979);
R. Barbieri, J. Ellis, and M. K. Gaillard, Phys. Lett. B 90, 249 (1980);
M. Gell-Mann, P. Ramond, and R. Slansky, Supergravity, ed. P. von Nieuwenhuizen and
D. Freedman (North Holland, 1979);
T. Yanagida, Proc. Workshop on Unified Theories and Baryon Number in the Universe,
ed. O. Sawada and A. Sugamoto, KEK, Japan (1979);
J. L. Chkareuli, I. G. Gogoladze, and A. B. Kobakhidze, Phys. Lett. B 484, 87 (2000).

[22] J. Schechter and J. W. F. Valle, Phys. Rev. D 25, 2951 (1982).

[23] D. Rajaram et al., “Search for the Lepton-Number-Violating Decay Ξ− → pµ−µ−,”
Phys. Rev. Lett. 94, 181801 (2005).

[24] S. Glashow, Phys. Rev. Lett. 6, 196 (1961).

[25] X. G. He and G. Valencia, Phys. Lett. B 409, 469 (1997); Erratum-ibid. 418, 443 (1998).

[26] S. Fajfer and P. Singer, Phys. Rev. D 62, 117702 (2000); Phys. Rev. D 65, 017301
(2002).

[27] C. G. White et al., “Search for Delta ∆S = 2 Nonleptonic Hyperon Decays,” Phys.
Rev. Lett. 94, 101804 (2005).

[28] See, e.g., G. Eilam et al., Phys. Rev. D 53, 3629 (1996).

[29] M. Bourquin et al., Nucl. Phys. B 241, 1 (1984).

[30] Based on R. Safadi and P. Singer, Phys. Rev. D 37, 697 (1988) [Erratum-ibid. 42, 1856
(1990)], using B = 1 ×10−4 for the radiative decay Ω− → Ξ−γ.

[31] H. K. Park et al., “Evidence for the Decay Σ+ → pµ+µ−,” Phys. Rev. Lett. 94, 021801
(2005).

[32] R. A. Burnstein et al., “HyperCP: A High-Rate Spectrometer for the Study of Charged
Hyperon and Kaon Decays,” Nucl. Instrum. Methods A 541, 516 (2005).

[33] M. Huang et al., “New Measurement of Ξ− → Λπ− Decay Parameters,” Phys. Rev.
Lett. 93, 011802 (2004);
M. J. Longo et al., “High-Statistics Search for the Θ+(1.54) Pentaquark,” Phys. Rev.
D 70, 111101(R) (2004);
T. Holmstrom et al., “Search for CP Violation in Charged-Ξ and Λ Hyperon Decays,”

41

[19] T. Araki et al. (KamLAND Collaboration), “Measurement of Neutrino Oscillation with
KamLAND: Evidence of Spectral Distortion,” Phys. Rev. Lett. 94, 081801 (2005).

[20] Y. Fukuda et al. (Super-Kamiokande Collaboration), Phys. Lett. B 433, 9 (1998); Phys.
Lett. B 436, 33 (1998); Phys. Rev. Lett. 81, 1562 (1998); Phys. Lett. B 467, 185 (1999);
Q. R. Ahmad et al. (SNO Collaboration), Phys. Rev. Lett. 87, 071301 (2001); ibid. 89,
011302 (2002);
K. Eguchi et al. (KamLAND Collaboration), ibid. 90, 021802 (2003).

[21] S. Weinberg, Phys. Rev. Lett. 43, 1566 (1979);
R. Barbieri, J. Ellis, and M. K. Gaillard, Phys. Lett. B 90, 249 (1980);
M. Gell-Mann, P. Ramond, and R. Slansky, Supergravity, ed. P. von Nieuwenhuizen and
D. Freedman (North Holland, 1979);
T. Yanagida, Proc. Workshop on Unified Theories and Baryon Number in the Universe,
ed. O. Sawada and A. Sugamoto, KEK, Japan (1979);
J. L. Chkareuli, I. G. Gogoladze, and A. B. Kobakhidze, Phys. Lett. B 484, 87 (2000).

[22] J. Schechter and J. W. F. Valle, Phys. Rev. D 25, 2951 (1982).

[23] D. Rajaram et al., “Search for the Lepton-Number-Violating Decay Ξ− → pµ−µ−,”
Phys. Rev. Lett. 94, 181801 (2005).

[24] S. Glashow, Phys. Rev. Lett. 6, 196 (1961).

[25] X. G. He and G. Valencia, Phys. Lett. B 409, 469 (1997); Erratum-ibid. 418, 443 (1998).

[26] S. Fajfer and P. Singer, Phys. Rev. D 62, 117702 (2000); Phys. Rev. D 65, 017301
(2002).

[27] C. G. White et al., “Search for Delta ∆S = 2 Nonleptonic Hyperon Decays,” Phys.
Rev. Lett. 94, 101804 (2005).

[28] See, e.g., G. Eilam et al., Phys. Rev. D 53, 3629 (1996).

[29] M. Bourquin et al., Nucl. Phys. B 241, 1 (1984).

[30] Based on R. Safadi and P. Singer, Phys. Rev. D 37, 697 (1988) [Erratum-ibid. 42, 1856
(1990)], using B = 1 ×10−4 for the radiative decay Ω− → Ξ−γ.

[31] H. K. Park et al., “Evidence for the Decay Σ+ → pµ+µ−,” Phys. Rev. Lett. 94, 021801
(2005).

[32] R. A. Burnstein et al., “HyperCP: A High-Rate Spectrometer for the Study of Charged
Hyperon and Kaon Decays,” Nucl. Instrum. Methods A 541, 516 (2005).

[33] M. Huang et al., “New Measurement of Ξ− → Λπ− Decay Parameters,” Phys. Rev.
Lett. 93, 011802 (2004);
M. J. Longo et al., “High-Statistics Search for the Θ+(1.54) Pentaquark,” Phys. Rev.
D 70, 111101(R) (2004);
T. Holmstrom et al., “Search for CP Violation in Charged-Ξ and Λ Hyperon Decays,”

41

Phys. Rev. Lett. 93, 262001 (2005);
Y. C. Chen et al., “Measurement of the Alpha Asymmetry Parameter for the Ω− → ΛK−

Decay,” Phys. Rev. D 71, 051102(R) (2005);
L. C. Lu et al., “Observation of Parity Violation in the Ω− → ΛK− Decay,” Phys. Lett.
B 617, 11 (2005).

[34] B. Baumbaugh et al., IEEE Trans. Nucl. Sci. 43, 1146 (1996).

[35] See http://ppd.fnal.gov/experiments/e907 as well as
http://ppd.fnal.gov/experiments/e907/Proposal/P00 Proposal.pdf and
http://ppd.fnal.gov/experiments/e907/Proposal/P01 Addendum.pdf

[36] Y. Fisyak et al., Fermilab Proposal 907, May 2000, available at
http://ppd.fnal.gov/experiments/e907/Proposal/P00 Proposal.pdf

[37] S. Eidelman et al. (Particle Data Group), Phys. Lett. B 592, 1 (2004).

[38] F. Ardellier et al., Letter of Intent for Double-CHOOZ: a Search for the Mixing Angle
θ13, May 2004, e-Print Archive: hep-ex/0405032.

[39] P. Huber, M. Lindner, T. Schwetz, and W. Winter, Nucl. Phys. B 665, 487 (2003).

[40] K. Anderson et al., White Paper, A New Nuclear Reactor Neutrino Experiment to
Measure θ13 (2004), hep-ex/0402041, available from
http://www.hep.anl.gov/minos/reactor13/white.html

[41] See http://www-nova.fnal.gov/

[42] See http://www.hep.anl.gov/ndk/hypertext/reactor neutrino.html

[43] See http://www.phys.lsu.edu/doublechooz/

[44] S. Berridge et al., Proposal for U.S. participation in Double-CHOOZ: A New θ13 Ex-
periment at the Chooz Reactor, Oct. 2004, hep-ex/0410081.

[45] M. Apollonio et al., Eur. Phys. J. C 27, 331 (2003).

[46] H. Minakata et al., Phys. Rev. D 68, 033017 (2003); Erratum-ibid. D 70, 05990 (2004).

[47] Y. Ashie et al., Phys. Rev. Lett. 93, 101801 (2004).

[48] S. T. Petcov and M. Piai, Phys. Lett. B 533, 94 (2002).

[49] See, e.g., M. M. Alsharoa, “Electromagnetic and Mechanical Design of Gridded Radio-
Frequency Cavity Windows,” PhD Thesis, MMAE Dept., Illinois Institute of Technol-
ogy, Dec. 2004;
A. V. Obabko, E. A. Almasri, and K. W. Cassel, “Unsteady Natural Convection in a
Horizontal Cylinder with Internal Heat Generation,” Proc. 2003 ASME Fluids Engi-
neering Division Summer Meeting, Honolulu, Hawaii, July 6–10, 2003;
A. V. Obabko, E. A. Almasri, and K. W. Cassel, “Natural Convection with Internal
Heat Generation - Proper Scales and Unsteady Flow in a Horizontal Cylinder,” Physics
of Fluids, submitted (2005).

42

•  

•  

•  

•  

•  

•  

•  

•  

[19] T. Araki et al. (KamLAND Collaboration), “Measurement of Neutrino Oscillation with
KamLAND: Evidence of Spectral Distortion,” Phys. Rev. Lett. 94, 081801 (2005).

[20] Y. Fukuda et al. (Super-Kamiokande Collaboration), Phys. Lett. B 433, 9 (1998); Phys.
Lett. B 436, 33 (1998); Phys. Rev. Lett. 81, 1562 (1998); Phys. Lett. B 467, 185 (1999);
Q. R. Ahmad et al. (SNO Collaboration), Phys. Rev. Lett. 87, 071301 (2001); ibid. 89,
011302 (2002);
K. Eguchi et al. (KamLAND Collaboration), ibid. 90, 021802 (2003).

[21] S. Weinberg, Phys. Rev. Lett. 43, 1566 (1979);
R. Barbieri, J. Ellis, and M. K. Gaillard, Phys. Lett. B 90, 249 (1980);
M. Gell-Mann, P. Ramond, and R. Slansky, Supergravity, ed. P. von Nieuwenhuizen and
D. Freedman (North Holland, 1979);
T. Yanagida, Proc. Workshop on Unified Theories and Baryon Number in the Universe,
ed. O. Sawada and A. Sugamoto, KEK, Japan (1979);
J. L. Chkareuli, I. G. Gogoladze, and A. B. Kobakhidze, Phys. Lett. B 484, 87 (2000).

[22] J. Schechter and J. W. F. Valle, Phys. Rev. D 25, 2951 (1982).

[23] D. Rajaram et al., “Search for the Lepton-Number-Violating Decay Ξ− → pµ−µ−,”
Phys. Rev. Lett. 94, 181801 (2005).

[24] S. Glashow, Phys. Rev. Lett. 6, 196 (1961).

[25] X. G. He and G. Valencia, Phys. Lett. B 409, 469 (1997); Erratum-ibid. 418, 443 (1998).

[26] S. Fajfer and P. Singer, Phys. Rev. D 62, 117702 (2000); Phys. Rev. D 65, 017301
(2002).

[27] C. G. White et al., “Search for Delta ∆S = 2 Nonleptonic Hyperon Decays,” Phys.
Rev. Lett. 94, 101804 (2005).

[28] See, e.g., G. Eilam et al., Phys. Rev. D 53, 3629 (1996).

[29] M. Bourquin et al., Nucl. Phys. B 241, 1 (1984).

[30] Based on R. Safadi and P. Singer, Phys. Rev. D 37, 697 (1988) [Erratum-ibid. 42, 1856
(1990)], using B = 1 ×10−4 for the radiative decay Ω− → Ξ−γ.

[31] H. K. Park et al., “Evidence for the Decay Σ+ → pµ+µ−,” Phys. Rev. Lett. 94, 021801
(2005).

[32] R. A. Burnstein et al., “HyperCP: A High-Rate Spectrometer for the Study of Charged
Hyperon and Kaon Decays,” Nucl. Instrum. Methods A 541, 516 (2005).

[33] M. Huang et al., “New Measurement of Ξ− → Λπ− Decay Parameters,” Phys. Rev.
Lett. 93, 011802 (2004);
M. J. Longo et al., “High-Statistics Search for the Θ+(1.54) Pentaquark,” Phys. Rev.
D 70, 111101(R) (2004);
T. Holmstrom et al., “Search for CP Violation in Charged-Ξ and Λ Hyperon Decays,”

41

•  

Some HyperCP Publications:

32



D. M. Kaplan, IIT 18 Nov 2011Antiproton Physics at the Intensity Frontier

• Some Hyperon CP references:

[21] D. V. Bugg, Phys. Lett. B 598, 8 (2004); Phys. Rev. D 71, 016006 (2005).

[22] L. Maiani, F. Piccinini, A. D. Polosa, and V. Riquer, Phys. Rev. D 71, 014028 (2005);
L. Maiani, V. Riquer, F. Piccinini and A. D. Polosa, Phys. Rev. D 72, 031502 (2005);
H. Hogaasen, J. M. Richard and P. Sorba, Phys. Rev. D 73, 54013 (2006).

[23] N. A. Tørnqvist, Phys. Lett. B 590, 209 (2004).

[24] T. Barnes, S. Godfrey, Phys. Rev. D 69, 054008 (2004).

[25] J. Rosner, Phys. Rev. D 74, 076006 (2006).

[26] A. Vairo, “Heavy Hadron Spectroscopy,” submitted to Proc. XXXIII International

Conference on High Energy Physics (ICHEP 06), Moscow, Russia, July 26 – August
2, 2006, arXiv:hep-ph/0611310.

[27] E. Braaten, Phys. Rev. D 73, 011501(R) (2006); E. Braaten, private communication.

[28] T. A. Armstrong et al. [E760 Collaboration], Nucl. Phys. B 373, 35 (1992).

[29] B. Aubert et al. [BABAR Collaboration], Phys. Rev. Lett. 96, 052002 (2006).

[30] See http://belle.kek.jp/superb/.

[31] See for example J. L. Rosner, in Proc. 8th Jorge Andre Swieca Summer School:

Particles and Fields, Rio de Janeiro, Brazil, 5–18 Feb. 1995, J. Barcelos-Neto, S. F.
Novaes, V. O. Rivelles, eds., World Scientific (1996), p. 116. [arXiv: hep-ph/9506364]

[32] A. Pais, Phys. Rev. Lett. 3, 242 (1959); O. E. Overseth and S. Pakvasa, Phys. Rev.
184, 1663 (1969); J. F. Donoghue and S. Pakvasa, Phys. Rev. Lett. 55, 162 (1985).

[33] J. F. Donoghue, X.-G. He, S. Pakvasa, Phys. Rev. D 34, 833 (1986); X.-G. He, H.
Steger, G. Valencia, Phys. Lett. B 272, 411 (1991).

[34] G. Valencia, Proc. p2000 Workshop, D. M. Kaplan and H. A. Rubin, eds., Illinois
Institute of Technology, Chicago, IL 60616, USA, Aug. 3–5, 2000.

[35] J. Tandean, G. Valencia, Phys. Lett. B 451, 382 (1999).

[36] J. Tandean, Phys. Rev. 70, 076005 (2004).

[37] T. D. Lee and C. N. Yang, Phys. Rev. D 70, 076005 (2004).

[38] J. F. Donoghue, B. R. Holstein, and G. Valencia, Phys. Lett. 178B, 319 (1986) and
Int. J. Mod. Phys. A 2, 319 (1987).

[39] P. Chauvat et al., Phys. Lett. 163B, 273 (1985).

[40] M. H. Tixier et al., Phys. Lett. B 212, 523 (1988).

[41] P. D. Barnes et al., Nucl. Phys. B (Proc. Suppl.) 56A, 46 (1997).

[42] K. B. Luk et al., Phys. Rev. Lett. 85, 4860 (2000).

[43] D. E. Jaffe et al., “Search for Direct CP Violation in Ξ Hyperon Decay,” CLNS
98/1587, CLEO 98-16 (2000) (unpublished).

19

[67] See http://www.e835.to.infn.it/

[68] D. Chang, X.-G. He, and S. Pakvasa, Phys. Rev. Lett. 74, 3927 (1995).

[69] X.-G. He, H. Murayama, S. Pakvasa, G. Valencia, Phys. Rev. D 618, 071701(R)

(2000).

[70] See http://www-d0.fnal.gov/public/detector/pictures.html

[71] M. A. Turqueti et al., “Pixel Multichip Module Development at Fermilab,” in Proc.

11th Workshop on Electronics for LHC and Future Experiments, CERN-2005-011,

CERN-LHCC-2005-028, p. 205, available from

http://indico.cern.ch/materialDisplay.py?contribId=73&amp;sessionId=56&amp;
materialId=paper&amp;confId=0510 (and references therein);

L. Uplegger et al., “First Look at the Beam Test Results of the FPIX2 Readout Chip

for the BTeV Silicon Pixel Detector,” IEEE Trans. Nucl. Sci. 53, 409 (2006).

[72] E. E. Gottschalk (for the BTeV collaboration), in Proc. 10th Int. Conf. on B Physics

at Hadron Machines (BEAUTY 2005), Assisi, Perugia, Italy, 20–24 June 2005, Nucl.

Phys. Proc. Suppl. 156, 252 (2006) (and references therein).

21

33


