

Hyperon (\& Other) Physics with Antiprotons Daniel M. Kaplan ILLINOIS INSTITUTE Vi° OF TECHNOLOGY

Antiproton Physics at the Intensity Frontier
Fermilab
I8 Nov. 20 II

Outline

- Hyperon CP violation
- Charmonium \& XYZs
- \bar{p} Drell-Yan
- Summary

Hyperon CPViolation

- An old topic:

Final-State Interactions in Nonleptonic Hyperon Decay

O. E. Overseth*
The Universily of Michigan, Ann Arbor, Michigan 48104
AND
S. Pakvasa \dagger
University of Hawaii, Honolulu, Hawaii 96822
(Received 1 April 1969)

E. Tests for CP and CPT Invariance

Thus in hyperon decay, $\bar{\alpha} \neq-\alpha$ implies $C P$ violation in this process independent of the validity of the $C P T$ theorem. This is also true if $\bar{\beta} \neq-\beta$.

Also, as usual, $C P T$ invariance implies equality of Λ^{0} and $\bar{\Lambda}^{0}$ lifetimes, whereas $C P$ invariance implies equality of partial rates $\Gamma^{0}=\bar{\Gamma}^{0}$, and $\Gamma^{-}=\bar{\Gamma}^{+}$. This is also true when final-state interactions are included in the analysis.

Hyperon CPViolation

- Example Feynman diagrams (SM):

Λ penguin decay:

- "New physics" (SUSY, etc.) could also contribute!

Hyperon CPViolation

- Hyperon decay violates parity, as described by Lee \& Yang (1957) via " α " and " β " parameters
- e.g., decay of polarized Lambda hyperons:

$$
\frac{d N}{d \Omega}=\frac{1}{4 \pi}\left(1+\alpha_{\Lambda} \vec{P}_{\Lambda} \cdot \hat{q}_{p}\right)
$$

\rightarrow nonuniform proton angular distribution in Λ rest frame w.r.t. average spin direction \vec{P}_{\wedge}

- size of α indicates degree of nonuniformity:

$$
\begin{aligned}
& \alpha_{\Lambda}=0.642(\pm 0.013) \Rightarrow p \text { emitted preferentially along } \\
& \text { polarization (} \Lambda \text { spin) direction }
\end{aligned}
$$

Large size of α looks favorable for CPV search!

Hyperon CPViolation

- Hyperon decay violates parity, as described by Lee \& Yang (1957) via " α " and " β " parameters
- e.g., decay of polarized Lambda hyperons:

$$
\frac{d N}{d \Omega}=\frac{1}{4 \pi}\left(1+\alpha_{\Lambda} \vec{P}_{\Lambda} \cdot \hat{q}_{p}\right)
$$

\rightarrow nonuniform proton angular distribution in Λ rest frame:

Hyperon CPViolation

- But, for precise measurement of A_{\wedge}, need excellent knowledge of relative Λ and $\bar{\Lambda}$ polarizations!
\Rightarrow HyperCP "trick": $\Xi^{-} \rightarrow \Lambda \pi^{-}$decay gives $\vec{P}_{\Lambda}=-\vec{P}_{\bar{\Lambda}}$

$$
\begin{aligned}
& \Xi^{-} \rightarrow \Lambda \pi^{-} \rightarrow p \pi^{-} \pi^{-} \quad \bar{\Xi}^{+} \rightarrow \bar{\Lambda} \pi^{+} \rightarrow \bar{p} \pi^{+} \pi^{+} \\
& \text {slope }=\alpha_{\Lambda} \alpha_{\Xi} \left\lvert\, \frac{d N}{d \cos \theta} \underbrace{\text { slope }=\alpha_{\bar{\Lambda}} \alpha_{\Xi}}_{-1}\right.
\end{aligned}
$$

- Unequal slopes $\Rightarrow \mathrm{CP}$ violated!

Hyperon CPViolation

- Differently sensitive to New Physics than B, K CPV
- Standard Model predicts small CP asymmetries in hyperon decay
- NP can amplify them by orders of magnitude:

Table 5: Summary of predicted hyperon $C P$ asymmetries.

Asymm.	Mode	SM	NP	Ref.
A_{Λ}	$\Lambda \rightarrow p \pi$	$\lesssim 10^{-5}$	$\lesssim 6 \times 10^{-4}$	$[68]$
$A_{\Xi \Lambda}$	$\Xi^{\mp} \rightarrow \Lambda \pi, \Lambda \rightarrow p \pi$	$\lesssim 5 \times 10^{-5}$	$\leq 1.9 \times 10^{-3}$	$[69]$
$A_{\Omega \Lambda}$	$\Omega \rightarrow \Lambda K, \Lambda \rightarrow p \pi$	$\leq 4 \times 10^{-5}$	$\leq 8 \times 10^{-3}$	$[36]$
$\Delta_{\Xi \pi}$	$\Omega \rightarrow \Xi^{0} \pi$	2×10^{-5}	$\leq 2 \times 10^{-4 *}$	$[35]$
$\Delta_{\Lambda K}$	$\Omega \rightarrow \Lambda K$	$\leq 1 \times 10^{-5}$	$\leq 1 \times 10^{-3}$	$[36]$

*Once they are taken into account, large final-state interactions may increase this prediction [56].

Small sizes of $(A, \Delta)_{\text {sm }}$ favorable for NP CPV search!

Hyperon CPViolation

- Measurement history:

Experiment	Decay Mode	\mathbf{A}_{Λ}
R608 at ISR	$p p \rightarrow \Lambda X, \bar{p} p \rightarrow \bar{\Lambda} X$	$\mathbf{- 0 . 0 2} \pm \mathbf{0 . 1 4}$ [P. Chauvat et al., PL 163B (1985) 273]
DM2 at Orsay	$e^{+} e^{-} \rightarrow J / \Psi \rightarrow \Lambda \bar{\Lambda}$	$\mathbf{0 . 0 1} \pm \mathbf{0 . 1 0}$ [M.H. Tixier et al., PL B212 (1988) 523]
PS185 at LEAR	$p \bar{p} \rightarrow \Lambda \bar{\Lambda}$	$\mathbf{0 . 0 0 6} \pm \mathbf{0 . 0 1 5}$ [P.D. Barnes et al., NP B 56A (1997) 46]
Experiment	Decay Mode	$\mathbf{A}_{\Xi}+\mathbf{A}_{\Lambda}$
E756 at Fermilab	$\Xi \rightarrow \Lambda \pi, \Lambda \rightarrow p \pi$	$\mathbf{0 . 0 1 2} \pm \mathbf{0 . 0 1 4}$ [K.B. Luk et al., PRL 85, 4860 (2000)]
E871 at Fermilab (HyperCP)	$\Xi \rightarrow \Lambda \pi, \Lambda \rightarrow p \pi$	$\begin{aligned} & (\mathbf{0 . 0} \pm \mathbf{6 . 7}) \times \mathbf{1 0}^{\mathbf{- 4}}{ }_{\text {PRL } 93.262001 \text { (2004) } \text { Holmstrom et al., }} \\ & (-\mathbf{6} \pm \mathbf{2} \pm \mathbf{2}) \times \mathbf{1 0}^{-4}[\text { BEACH08 preliminary; PRL in prep] } \end{aligned}$

Hyperon CPViolation

- Measurement history:

Made possible by... Enormous HyperCP Dataset

PRL 98, 081802 (2007)

$\approx 2.4 \sigma$ fluctuation of SM? or

- SUSY Sgoldstino?
- SUSY light Higgs?

REVIEW LETTERS

- other pseudoscalar or axialvector state?
week ending

Does the HyperCP Evidence for the Decay $\boldsymbol{\Sigma}^{+} \rightarrow \boldsymbol{p} \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}$Indicate a Light Pseudoscalar Higgs Boson?

Xiao-Gang He*
Department of Physics and Center for Theoretical Sciences, National Taiwan University, Taipei, Taiwan
Jusak Tandean ${ }^{\dagger}$
Departments of Mathematics, Physics, and Computer Science, University of La Verne, La Verne, California 91750, USA
G. Valencia ${ }^{\ddagger}$

Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
(Received 2 November 2006; published 22 February 2007)
The HyperCP Collaboration has observed three events for the decay $\Sigma^{+} \rightarrow p \mu^{+} \mu^{-}$which may be interpreted as a new particle of mass 214.3 MeV . However, existing data from kaon and B-meson decays provide stringent constraints on the construction of models that support this interpretation. In this Letter we show that the "HyperCP particle" can be identified with the light pseudoscalar Higgs boson in the next-to-minimal supersymmetric standard model, the A_{1}^{0}. In this model there are regions of parameter space where the A_{1}^{0} can satisfy all the existing constraints from kaon and B-meson decays and mediate $\Sigma^{+} \rightarrow p \mu^{+} \mu^{-}$at a level consistent with the HyperCP observation.

TAPAS

Our proposal:

- Now that Tevatron finished,
- Reinstall E760 barrel calorimeter
- Add small magnetic spectrometer Specrometer)

- Add precision TOF system
- Add thin targets

SciFi DAQ
from DØ \&
final ione

- Add fast trigger \& DAQ systems
- Run $p_{\bar{p}}=5.4 \mathrm{GeV} / \mathrm{c}\left(2 m_{\Omega}<\sqrt{s}<2 m_{\Omega}+m_{\pi 0}\right)$
@ $\ell \sim 10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}(10 \times$ E835 $)$
$\Rightarrow \sim 10^{8} \Omega^{-} \bar{\Omega}^{+} / y r+\sim 10^{12}$ inclusive hyperon events!
+ possibly ~ 10^{10} 三- $^{-}{ }^{+}$

What Can This Do?

- Observe many more $\Sigma^{+} \rightarrow p \mu^{+} \mu^{-}$events and confirm or refute new-physics interpretation
- Discover or limit $\Omega^{-} \rightarrow \Xi^{-} \mu^{+} \mu^{-}$and confirm or refute new-physics interpretation $>$ Predicted $B \sim 10^{-6}$ if P^{0} real
- Discover or limit CP violation in $\Omega^{-} \rightarrow \Lambda K^{-}$ and $\Omega^{-} \rightarrow \Xi^{0} \pi^{-}$via partial-rate asymmetries
Predicted $\triangle B / B \sim 10^{-5}$ in $\mathrm{SM}, \leq 10^{-3}$ if NP
- Observe ~ $10^{10} \bar{\Xi}^{+} \bar{\Xi}^{-}$pairs, measure both $A \equiv \wedge$ and $B \equiv$, and extract $A \equiv$ and A_{\wedge}, with 10^{-4} precision*
*if deceleration through transition solved

What Else Can This Do?

- Also good for "charmonium" (čc QCD "hydrogen atom"):
- Fermilab E760/835 used Antiproton Accumulator for precise ($\lesssim 100 \mathrm{keV}$) measurements of charmonium parameters, e.g.:
- best measurements of $\eta_{c}, \chi_{c}, h_{c}$ masses, widths, branching ratios,...

$-\bar{p} p$ produces all cc quantum states (not just I^{--}), unlike $\mathrm{e}^{+} \mathrm{e}^{-}$

What Else Can This Do?

- Much interest lately in new states observed in charmonium region: $X(3872), X(3940), Y(3940)$, $Y(4260)$, and $Z(3930)$
- $X(3872)$ of particular interest because it may be the first meson-antimeson ($D^{0} \bar{D}^{* 0}+$ c.c.) molecule
\Rightarrow need very precise mass measurement to confirm or refute
$\Rightarrow \bar{p} p \rightarrow X(3872)$ formation ideal for this...

Example: precision $\bar{p} p$ mass

 \& width measurements

- The beam is the spectrometer! $\rightarrow\left\{\begin{array}{l}\delta m\left(\chi_{c}\right) \approx 0.1 \pm 0.02 \mathrm{MeV} / \mathrm{c}^{2} \\ \delta \Gamma\left(\chi_{c}\right) \approx 0.1 \pm 0.01 \mathrm{MeV} / \mathrm{c}^{2}\end{array}\right.$
- The experiment is just the detector.

Else What Can This Do?

- Much interest lately in new states observed in charmonium region: $X(3872), X(3940), Y(3940)$, $Y(4260)$, and $Z(3930)$
- X(3872) of particular interest because it may be the first meson-antimeson ($D^{0} \bar{D}^{* 0}+$ c.c.) molecule
\Rightarrow need very precise mass measurement to confirm or refute
$\Rightarrow \bar{p} p \rightarrow X(3872)$ formation ideal for this...
- Plus other $X Y Z$, charmonium measurements, etc...

What Else?

- QCD tests:
- event shapes and distributions
- intrinsic charm $q \bar{q}$ component in the nucleon?
- Search for new, exotic states of matter:
- pentaquarks, gluonic hybrids, etc.
- Target-A dependence:
- possible calibration for heavy-ion effects
- Drell-Yan electron-positron pair production:
- can signal be distinguished from background?

$\bar{p} p$ Drell-Yan

 ${ }_{q}^{\bar{q}}>\sim<_{\ell^{-}}^{\ell^{+}}$- $\ell^{+} \ell^{-}$invariant-mass and momentum distributions sensitive to quark and antiquark distributions inside colliding protons and neutrons
- Global fits of nucleon structure suffer from significant tension among datasets
- $\bar{p} p$ or $\bar{p} A$ Drell-Yan can potentially add new constraints with very different systematics
- "valence-valence" quark-antiquark annihilation

Can signal be dug out of the background???

Compare signal with main backgrounds

- Low energy is advantageous:
\Rightarrow less charm background
\square fewer pions to confuse
\square allows measurement in new kinematic region

$\bar{p} p$ Drell-Yan

- Medium Energy \bar{p} Drell-Yan also studies
I. Lam-Tung-relation violation in πN DY

2. Boer-Mulders (quark spin- p_{t} correlation) function
3. Weinberg angle (NuTeV anomaly) via FB asymmetry
4. Threshold resummation (important for JLab as well as intrinsically interesting)

Breadth of Program

- Partial list of physics papers/thesis topics:

General	
1	Particle multiplicities in medium-energy pbar-p collisions
2	Particle multiplicities in medium-energy pbar-N collisions
3	Total cross section for medium-energy pbar-p collisions
4	Total cross section for medium-energy pbar-N collisions
Charm	
5	Production of charm in medium-energy pbar-p collisions
6	Production of charm in medium-energy pbar-N collisions
7	A-dependence of charm production in medium-energy pbar-N collisions
8	Associated production of charm baryons in medium-energy pbar-N collisions
9	Production of charm baryon-antibaryon pairs in medium-energy pbar-N collisions
10	Measurement of D0 mixing in medium-energy pbar-N collisions
11	Search for/Observation of CP violation in D0 mixing
12	Search for/Observation of CP violation in DO decays
13	Search for/Observation of CP violation in charged-D decays
Hyperons	
14	Production of Lambda hyperons in medium-energy pbar-p collisions
15	Production of Sigma0 in medium-energy pbar-p collisions
16	Production of Sigma- in medium-energy pbar-p collisions
17	Production of Xi- in medium-energy pbar-p collisions
18	Production of Xi0 in medium-energy pbar-p collisions

19	Production of Omega- in medium-energy pbar-p collisions
20	Production of Lambda Lambdabar pairs in medium-energy pbar-p collisions
21	Production of Sigma+ Sigmabar- pairs in medium-energy pbar-p collisions
22	Production of Xi- Xibar+ pairs in medium-energy pbar-p collisions
23	Production of Omega- Omegabar+ pairs in medium-energy pbar-p collisions
24	Rare decays of Sigma+
25	Rare decays of Xi-
26	Rare decays of Xi0
27	Rare decays of Omega-
28	Search for/Observation of CP violation in Omega- decay
Charmonium	
29	Production of X(3872) in medium-energy pbar-p collisions
30	Precision measurement of X(3872) mass, lineshape, and width
31	Decay modes of X(3872)
32	Limits on rare decays of X(3872)
33	Production of other XYZ states in medium-energy pbar-p collisions
34	Precision measurement of the eta_c mass, line shape and width
35	Precision measurement of the h_c mass, line shape and width
36	Precision measurement of the eta_c' mass, line shape and width
37	Complementary scans of J/psi and psi'
38	Precise determination of the chi_c COG
39	Production of J/psi and Chi_cJ in association with pseudoscalar meson(s)

TAPAS could maintain hadron physics at post-Tevatron Fermilab, multiplying physics output several-fold

Summary

- Best experiment ever on hyperons, charmonia, and charm may soon be feasible at Fermilab
- possibly world's most sensitive study of charm mixing, charm \& hyperon CPV \& rare decays, + unique $\bar{p} D Y$
- Existing equip't enables quick, cost-effective effort
- could start data-taking by 2014
- Preserves options for antihydrogen experiments
- CPT, gravity tests
- World's best \bar{p} source offers simple way to broad physics program in pre-Project X era

Can Oddone's mind be changed?

Backup

Fine-Pitch Scintillating Fibers

- MICE SciFi Trackers with VLPC readout
$\rightarrow \approx 85 \%$ Q.E.
 8 $\rightarrow \cos$

II photoelectrons/m.i.p.

$\frac{\text { Muon Ionization Cooling Experiment }}{\text { Rutherford Appleton Lab, UK }}$

Figure 23: (left) CAD drawing of MICE tracker support frame, showing five carbon-fiber station support bodies mounted on space frame; (right) photo of carbon-fiber station support bodyAntiproton Physics at the Intensity Frontier

$0^{\text {th }}-o r d e r ~ r u n-p l a n ~ e x a m p l e: ~$

install/debug	$\sim 3 \mathrm{mo}$
find $X(3872)$	$\sim 1 \mathrm{mo}$
measure $\sigma\left(D^{*}\right)$	$\sim 1 \mathrm{mo}$
measure $\sigma(\Omega \bar{\Omega})$	$\sim 1 \mathrm{mo}$
charmonium	$\sim 3 \mathrm{mo}$
$X(3872)$ run	$\sim 12 \mathrm{mo}$
hyperon $C P$ run	$\sim 12 \mathrm{mo}$
install/debug hadron-ID upgrade	$\sim 3 \mathrm{mo}$
charm CP run	$\sim 12 \mathrm{mo}$

if σ 's favorable

PANDA

The \bar{P} ANDA Collaboration

Universität Basel, Switzerland
M. Kotulla, B. Krusche, F. Zehr

Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
J.J. Xie, B.S. Zou

Universität Bochum, I. Institut für Experimentalphysik, Germany
K. Götzen, T. Held, H. Koch, B. Kopf, B. Lewandowski, H. Nowak, H. Schmücker I. Steinke, P. Wieczorek, A. Wilms, J. Zhong

Helmholtz-Institut für Strahlen- und Kernphysik, Bonn, Germany
F. Hinterberger

Università di Brescia, Italy
A. Zenoni
A. Zenoni

Dipartimento di Fisica e Astronomia dell'Università di Catania and INFN, Sezione di Catania, Italy M. De Napoli, G. Raciti, E. Rapisarda

Instytut Fizyki, Uniwersytet Jagiellonski, Cracow, Poland
P. Hawranek, B. Kamys, St. Kistryn, A. Magiera, P. Moskal, B. Piskor-Ignatowicz
C. Piskor-Ignatowicz, Z. Rudy, P. Salabura, J. Smyrski, M. Wojciechowski

Gesellschaft für Schwerionenforschung mbH, Darmstadt, Germany
U. Lynen, J. Lühning, H. Orth, K. Peters, T.R. Saitoh, C. Schwarz, C. Sfienti Technische Universität Dresden, Germany
K.-T. Brinkmann, H. Freiesleben, R. Jäkel
Veksler-Baldin Laboratory of High Energies (VBLHE), Joint Institute for Nuclear Research (${ }^{a}$), Laboratory of Particle Physics (LPP) ${ }^{(b)}$), Laboratory of Information Technologies (LIT) (${ }^{c}$ ($)$, Laboratory of Nuclear Problems (LNP)
Institute of Applied Mathematics and Automation (f), Nal'chik, Russia V.M. Abazov ${ }^{d}$, G. Alexeev ${ }^{d}$, A. Arefiev ${ }^{a}$, M.Yu. Barabanov ${ }^{a}$, B.V. Batyunya ${ }^{a}$, D. Bogoslovski ${ }^{a}$, T.Yu. Bokova ${ }^{a}$, V.V. Borisov ${ }^{a}$, V.A. Budilov ${ }^{a}$ Yu.V. Bugaenko ${ }^{a}$, V.Kh. Dodokhov ${ }^{a}$, A.A. Efremov ${ }^{a}$
 E.K. Koshurnikov ${ }^{a}$, Vh. Kudaev ${ }^{d}$. ${ }^{\text {.I. Lobanov }}{ }^{a}$, A.F. Makarov ${ }^{a}$, L.V. Malinina ${ }^{a}$, V.L. Malyshev
K.V. Mikhailov ${ }^{a}$, B. Morosov ${ }^{a}$, G.A. Mustafaev ${ }^{e}$, A.M. Nakhushev ${ }^{f}$, P.V. Nomokonov ${ }^{a}$, I.A. Oleks ${ }^{a}$ V. Pismennaya ${ }^{a}$. T.A. Pocheptsov ${ }^{a}$, A. Polanskic, G. Pontecorvo ${ }^{d}$, A. Povtoreyko ${ }^{a}$. Yu.N. Rogov ${ }^{b}$, I.A. Rufanov ${ }^{a}$, S. Ryabtsun ${ }^{b}$, Z.Ya. Sadygov ${ }^{a}$, R.A. Salmin ${ }^{b}$, A.G. Samartsev ${ }^{d}$, M.G. Sapozhnikov ${ }^{b}$ T. Sereda ${ }^{a}$, G.S. Shabratova ${ }^{a}$, A.A. Shishkin d, A.N. Skachkova ${ }^{d}$, N.B. Skachkov ${ }^{d}$, E.A. Strokovsky ${ }^{b}$ R.Sh. Teshev ${ }^{e}$, V. Tikhomirov ${ }^{a}$, V.V. Tokmenin ${ }^{d}$, E.P. Ustenko ${ }^{a}$, V.V. Uzhinsky ${ }^{c}$, N.V. Vlasov ${ }^{b}$,
A.S. Vodopianov ${ }^{a}$, S.A. Zaporozhets ${ }^{a}$, N.I. Zhuravlev ${ }^{d}$ A.I. Zinchenk ${ }^{a}$

University of Edinburgh, United Kingdom
liotta, D. Branford, K. Föhl, D. Watts, P. W.
M. Aliotta, D. Branford, K. Föhl, D. Watts, P. Woods

Friedrich Alexander Universität Erlangen-Nürnberg, Germany
W. Eyrich, A. Lehmann

Northwestern University, Evanston, U.S.A.
K. Seth K. Seth

Università di Ferrara and INFN, Sezione di Ferrara, Italy D. Bettoni, R. Calabrese, P. Dalpiaz, E. Luppi, M. Savriè Johann Wolfgang Goethe-Universität Frankfurt, Germany R. Dörner, R. Grisenti, M. Kaesz

INFN-Laboratori Nazionali di Frascati, Italy
P. Gianotti, C. Guaraldo, O.N. Hartmann, M. Iliescu, V. Lucherini, E. Pace, C. Petrascu, D. Sirghi, F. Sirghi

INFN, Sezione di Genova, Italy
R. Ballantini, M. Macri, R. Parodi, A. Pozzo

Justus Liebig-Universität Gießen, II. Physikalisches Institut, Germany
Kungliga Tekniska Högskolan (KTH), Stockholm, Sweden B. Cederwall, A. Johnson

Stockholms Universitet, Swede
C. Bargholtz, K. Lindberg, P.E. Tegnér, I. Zartova

Università del Piemonte Orientale Alessandria Torino and INFN, Sezione di Torino, Italy M.L. Colantoni, L. Fava, D. Panzieri
M.G. Destefanis, W. Döring, P. Drexler, M. Düren, I. Fröhlich, D. G. Kirschner, W. Kühn, K. Makony votny, F. Ottone, C. Salz, J. Schneider, B. Seitz, G.-C. Serbanut,
H. Stenzel, U. Thöring M. Thiel
University of Glasgow, United Kingd
partimento di Fisica Generale 'A. Avogadro', Università di Torino and INFN, Sezione di Torino, Italy M. Alexeev, A. Amoroso, F. Balestra, R. Bertini, M.P. Bussa, O. Denisov, A. Ferrero, L. Ferrero,
J. Annand, A. Borissov, D. Ireland, R. Kaiser, J. Kellie, K. Livingston, C. McGeorge, D. Protopopescu, G. Rosner

Institut für Kernphysik (${ }^{a}$), Zentralinstitut für Elektronik ${ }^{(b)}$), Forschungszentrum Jülich, Germany M. Drochner ${ }^{b}$, W. Gast ${ }^{a}$, A. Gillitzer ${ }^{a}$, D. Grzonka ${ }^{a}$, V. Hejny ${ }^{a}$, G. Kemmerling ${ }^{b}$, H. Kleines ${ }^{b}$, W. Oelert ${ }^{a}$, D. Prasuhn ${ }^{a}$, J. Ritman ${ }^{a}$, S. Schadmand ${ }^{a}$, A. Sibirtsev ${ }^{a}$, A. Sokolov ${ }^{a}$, T. Stockmanns H. Ströher ${ }^{a}$, A. Ucar ${ }^{a}$, P. Vlasov ${ }^{a}$, P. Wintz ${ }^{a}$, P. Wüstner ${ }^{b}$

Uniwersytet Slaski, Katowice, Poland J. Holeczek, J. Kisiel, B. Kłos,

Institute of Modern Physics, the Chinese Academy of Science, Lanzhou, P.R. China R. Chen, L. Duan, Z. Hu W. Li, Z. Sun, G. Xiao, Z. Xiao, H. Xu, H. Xu Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, Germany P. Achenbach, J. Pochodzalla, A. Sanchez-Lorente

Politecnico di Milano $\left({ }^{(}\right)$, Physics Department, Università di Milano $\left({ }^{b}\right)$ and INFN, Sezione di

Research Institute for Nuclear Problems, Belarus State University, Minsk, Belarus V.I. Dormenev, G.Y. Drobychev, A.A. Fedorov, A.E. Korneev M.V. Korzhik, A.R. Lopatik,
O.V. Missevitch
Technische Universität München, Germany
B. Ketzer, I. Konorov, A. Mann, S. Neubert, S. Paul, L. Schmitt, Q. Weitzel Westfälische Wilhelms-Universität Münster, Germany D. Frekers, A. Khoukaz, A. Täschner, J. Wessels

Budker Institute of Nuclear Physics (BINP), Novosibirsk, Russia
E. Baldin, V. Malyshev, A. Maslennikov, S. Peleganchyk, G. Pospelov, A. Sukharev, Yu. Tikhonov Institut de Physique Nucléaire, Orsay, France
M. Guidal, T. Hennino, M. Mac Cormick, S. Ong, B. Ramstein, J. Van de Wiele, J. Pouthas, P. Rosier T. Zerguerras

Dipartimento di Fisica Nucleare e Teorica, Università di Pavia (${ }^{(}$), INFN, Sezione di Pavia ${ }^{(b)}$), Italy G. Bendiscioli ${ }^{a, b}$, G. Boca a $^{a, b}$, A. Fontana $a^{a, b}$, P. Genova a,b, L. Lavezzi ${ }^{a, b}$, P. Montagna ${ }^{a, b}$,

Institute for High Energy Physics (IHEP) $\left.)^{(}\right)$, Protvino;
Tomsk State University (TSU) ${ }^{(b)}$, Tomsk , Russia: Tomsk State University (TSU) (${ }^{b}$), Tomsk, Russia;

and National Center of Particle and High Energy Physics (NCPHEP) ${ }^{(}{ }^{c}$), Minsk, Belorussia Deputy
 O. Tolbanov ${ }^{b}$, A. Tyazhev ${ }^{b}$, A. Vorobiev ${ }^{a}$

Petersburg Nuclear Physics Institute of Academy of Science (PNPI), Gatchina, St. Petersburg, Russia
S. Belostotski, G. Gavrilov, Y. Naryshkin, O. Miklukho, A. Sarantsev, V. Vikhrov

$\overline{\text { PANDA Physics Topics }}$

- Charmonium (cc) spectroscopy (mass, widths, branching ratios)
- Establishment of the QCD-predicted gluonic excitations (charmed hybrids, glueballs) in the $3-5 \mathrm{GeV} / \mathrm{c}^{2}$ mass range
- Search for modifications of meson properties in the nuclear medium
- Precision γ-ray spectroscopy of single and double hypernuclei
- Extraction of generalized parton distributions from $\bar{p} p$ annihilation
- D meson decay spectroscopy (rare decays)
- Search for CP violation in the charm and strangeness sector

Background Study

- MIPP $D^{*}-D$ mass:

Background Study

- MIPP D* - D mass:

- Only a few background events - with no kaon ID!

Background Study

- MC comparison of $D^{0} \rightarrow K \pi$ signal \& prompt background

vtx cut	\#bkg	\#sig	sig/bkg	D accept.
No cut on z	10,000	10,000	1	50%
z >100 microns	1,589	7,106	4.5	35%
z>200 microns	238	5,168	22	25%
z>300 microns	14	3,679	250	18%
z>400 microns	0	2,669	>1000	13%

(Based on $240 \mu \mathrm{~m}$ SciFi)

$\Xi^{ \pm}$CPViolation

- Holmstrom et al., PRL 93, 2620I (2004):
- analysis of $\approx 5 \%$ of 三- $^{-}$sample, 10% of 三+

After weighting events to correct for unequal production spectra, etc.: $\delta(\cos \theta$ slope $)=0$

- C. Materniak, BEACH08:

$\Xi^{ \pm}$CPViolation

- Holmstrom et al., PRL 93, 2620I (2004):
- analysis of $\approx 5 \%$ of 三- $^{-}$sample, 10% of 三+

- C. Materniak, BEACH08:

$$
\begin{aligned}
A_{A_{\Lambda}} & =\frac{\alpha_{\bar{\Xi}} \alpha_{\Lambda}-\alpha_{\overline{\bar{E}}} \alpha_{\bar{\Lambda}}}{\alpha_{\bar{E}} \alpha_{\Lambda}+\alpha_{\overline{\bar{E}}} \alpha_{\bar{\Lambda}}} \\
& =[-6.0 \pm 2.1(\text { stat }) \pm 2.1(\text { syst })] \times 10^{-4}
\end{aligned}
$$

Some HyperCP Publications:

- L. C. Lu et al., "Measurement of the asymmetry in the decay $\bar{\Omega}^{+} \rightarrow \bar{\Lambda} K^{+} \rightarrow \bar{p} \pi^{+} K^{+}$," Phys. Rev. Lett. 96, 242001 (2006).
- D. Rajaram et al., "Search for the Lepton-Number-Violating Decay $\Xi^{-} \rightarrow p \mu^{-} \mu^{-}$," Phys. Rev. Lett. 94, 181801 (2005).
- C. G. White et al., "Search for Delta $\Delta S=2$ Nonleptonic Hyperon Decays," Phys. Rev. Lett. 94, 101804 (2005).
- H. K. Park et al., "Evidence for the Decay $\Sigma^{+} \rightarrow p \mu^{+} \mu^{-}$," Phys. Rev. Lett. 94, 021801 (2005).
- M. Huang et al., "New Measurement of $\Xi^{-} \rightarrow \Lambda \pi^{-}$Decay Parameters," Phys. Rev. Lett. 93, 011802 (2004);
- M. J. Longo et al., "High-Statistics Search for the $\Theta^{+}(1.54)$ Pentaquark," Phys. Rev. D 70, 111101(R) (2004);
- T. Holmstrom et al., "Search for $C P$ Violation in Charged- Ξ and Λ Hyperon Decays," Phys. Rev. Lett. 93, 262001 (2005);
- Y. C. Chen et al., "Measurement of the Alpha Asymmetry Parameter for the $\Omega^{-} \rightarrow \Lambda K^{-}$ Decay," Phys. Rev. D 71, 051102(R) (2005);
- L. C. Lu et al., "Observation of Parity Violation in the $\Omega^{-} \rightarrow \Lambda K^{-}$Decay," Phys. Lett. B 617, 11 (2005).
- R. A. Burnstein et al., "HyperCP: A High-Rate Spectrometer for the Study of Charged Hyperon and Kaon Decays," Nucl. Instrum. Methods A 541, 516 (2005).
- Some Hyperon CP references:
[32] A. Pais, Phys. Rev. Lett. 3, 242 (1959); O. E. Overseth and S. Pakvasa, Phys. Rev. 184, 1663 (1969); J. F. Donoghue and S. Pakvasa, Phys. Rev. Lett. 55, 162 (1985).
[33] J. F. Donoghue, X.-G. He, S. Pakvasa, Phys. Rev. D 34, 833 (1986); X.-G. He, H. Steger, G. Valencia, Phys. Lett. B 272, 411 (1991).
[34] G. Valencia, Proc. $\bar{p} 2000$ Workshop, D. M. Kaplan and H. A. Rubin, eds., Illinois Institute of Technology, Chicago, IL 60616, USA, Aug. 3-5, 2000.
[35] J. Tandean, G. Valencia, Phys. Lett. B 451, 382 (1999).
[36] J. Tandean, Phys. Rev. 70, 076005 (2004).
[68] D. Chang, X.-G. He, and S. Pakvasa, Phys. Rev. Lett. 74, 3927 (1995).
[69] X.-G. He, H. Murayama, S. Pakvasa, G. Valencia, Phys. Rev. D 618, 071701(R) (2000).

