

Development of Large Area Microchannel Plate Photodetectors

for the Large Area Picosecond Photodetector Development Collaboration Bob Wagner, Argonne National Laboratory Antiproton Physics at the Intensity Frontier Fermilab Friday 18 Nov 2011

Friday, November 18, 2011

Microchannel Plate Photomultipliers

Multiple plates to increase gain

Chevron arrangement to inhibit positive ion freeback to photocathode

MCP-PMT Module & Readout Concept

2×3 array of MCP Tiles for paneling detector, e.g. water Cherenkov tank

Strip readout pattern

3.8mm strips, 5mm pitch (40 strip anode) 4.6mm strips, 6.8mm pitch (30 strip anode) Coordinate readout:

- Time difference along strip
- Charge division for \perp direction

Motivation

Hermetic TOF Water Cherenkov Detector charged current interaction vertex v measurement of photon position and time

Water Cherenkov neutrino detector (LBNE) ~80-90% coverage and 3-d photon vertex reconstruction 100ps time & 10mm space resolution, \$10k/m²

Complete particle measurement: E, p + m(PID) 1ps time & 1mm space resolution, \$100k/m²

	Time-of-Flight in PET	
Bill Moses (LBNL) Large Area Picosecond Photodetector Workshop, Clermont-Ferrand, Jan 2010	c = 30 cm/ns 500 ps timing resolution $\Rightarrow 7.5 \text{ cm localization}$ $($	
	Time of Flight Provides a <i>Huge</i> Performance Increase! Largest Improvement in Large Patients	• No

	TOF (Effective Efficiency) Gain for Whole-Body PET (35 cm)				
	Hardware	∆t (ps)	TOF Gain		
	BGO Block Detector	3000	0.8		
	LSO Block (non-TOF)	1400	1.7		
	LSO Block (TOF)	550	4.2		
	LaBr ₃ Block	350	6.7		
	LSO Side Coupled	250	9.3		
	LSO Small Crystal	210	11.1		
	Lul ₃ Small Crystal	125	18.7		
	LaBr ₃ Small Crystal	70	33.3		
• /	 Incredible Gair Nothing Else Can Give U 	ns Predi Js Gains	cted s of This Size!		

LAPPD Project Scope

Large, Cheap, Fast Microchannel Plate Photomultiplier

- > 20×20 cm² active area (development on 3.3cm diam. disk)
- Novel, inexpensive MCP substrate
 - Borofloat glass capillary substrates (20-40 μ m pores, L/D ~60-40)
 - Anodic aluminum oxide (AAO) (research ended) -- ceramic
- Pore activation via Atomic Layer Deposition (ALD)
 - Separate material for resistive and secondary emission layers
 - Optimize resistive and emissive layers via study of range of materials
- Customized anode readout
 - Strip line double-ended readout for picosecond timing & water Cherenkov
 - Pad readout for energy and/or coarse spatial resolution -- gamma-ray telescope camera, dual readout calorimeters, medical imaging
- High quantum efficiency photocathode $--- \ge 25\%$
 - Bialkali (baseline), multialkali
 - "III-V" materials, e.g. GaAs, GaN
 - Systematic program of photocathode development and analysis
- Waveform sampling switched capacitor array ASIC for readout
- Use simulation to vet and tune design

Glass Capillary Substrate Development

- Borosilicate glass capillary substrates from Incom, Inc. (Charlton, MA, USA)
- Technology development on 32.8mm diameter disk substrates
 - 20µm (L/D=60) & 40µm (L/D=40)
 pore size
- 20cm \times 20cm plates for working detector
 - (18) 40µm pore substrates delivered
 - (35) 20µm pore substrates delivered
 - Baseline is 20µm pore

All substrate pores have 8° bias w.r.t axis ⊥ to substrate

Used in pair chevron configuration to reduce positive ion feedback damage to photocathode

20cm × 20 cm glass substrates October, 2011 photo credit: Joe Gregar, Argonne substrate detail

Advances in Glass Capillary Array Development 1st Batch vs. Present Batch 20um pores

- Multifiber stacking evident
- Triple point gaps
- Pore crushing at multifiber boundaries

- Triple point gaps eliminated
- Minimal pore distortion
- Still some stacking issues

Towards Large Area MCP Photodetectors, R. Wagner, Argonne, Antiproton Physics Workshop, Fermilab, 20111118

rkele

Commercial Microchannel Plate Fabrication

Glass is gravity-fed via cylindrical furnace

Glass is typically lead glass tube with solid soft glass core Borosilicate glass capillaries are hollow core

Billet Fabrication

Billet Slice, Grind, Polish

Chemical processing to remove soft core glass hollow core glass capillaries skip this step

Graphic Credit: B. Laprade & R. Starcher, Burle (2001)

Before sealing in tube, plate must be subjected to prolonged exposure to electrons at low voltage to outgas H₂ and other material ALD process greatly reduces scrub time (to zero?)

Pore Activation via Atomic Layer Deposition

ALD Thin Film Materials

- Conformal, self-limiting process
- Molecular mono-layer thickness control
- Large variety of applicable materials

Pore Activation via Atomic Layer Deposition (ALD)

Example:

CH₃ CH₂

Trimethyl Aluminum

ALD Functionalization of Micro-Channel Plates

New ALD chemistries for resistive coating developed at Argonne

Friday, November 18, 2011

Secondary Emissive Materials Characterization

Electroding - End Spoiling

End-spoiling on output

- Increases spatial resolution
- Decreases gain
- Trade-off h = 1-2

Towards Large Area MCP Photodetectors, R. Wagner, Argonne, Antiproton Physics Workshop, Fermilab, 20111118

Electroding system at Fermilab for 33mm MCPs

Line-of-sight evaporation

rotate

MCP Testing at Argonne -- APS UV Laser Facility

Friday, November 18, 2011

MCP Testing at Argonne -- APS UV Laser Facility

Operational voltages Plate geometry (pore size, L/D) Chemistry (SEE, resistive layer) Plate quality Uniformity Noise Stability Plate resistance Saturation Relaxation time

MCP Testing at Argonne -- "Mock Tile" MCPs

Eight 33mm MCP disks functionalized with identical "Chemistry 2" resistive coating and Al₂O₃ SEE layer

Commissioning of 8" Test Chamber at Argonne APS

8" Tile base with 33mm MCP pair ready for insertion into chamber

8" MCP Vacuum Test Assembly

First Pulse Measurements with 8" Anode Strip Line

First Pulses on 20cm × 20cm MCP Plate

ember 27, 2011

Simple soldered wire connection to strip line Readout and differential timing with fast scope

MCP Testing at Space Sciences Lab (SSL)/Berkeley

25mm Phosphor on 4.5" CF Flange

25mm Cross Strip Delay Line photon counting detector on 4.5" CF Flange

Single MCP Phosphor Image

Pair MCP XDL Image

Double Chamber UHV Test Station

Amp/TDC and PC Acq/display for XDL

Nikon camera or electrometer Towards Large Area MCP Photodetectors, R. Wagner, Argonne, Antiproton Physics Workshop, Fermilab, for Phosphor

Friday, November 18, 2011

Improvement in Glass Capillary Array Fabrication

 20 µm MCP, L/D = 60, 8° pore bias, 1000V applied to each MCP

- Imaging & gain comparable to commercial MCPs
- Sample performance shows dramatic improvement due to capillary process improvements

Argonne ALD MCP Pair Background Test

MCP pair, 20µm pores, 8° bias, 60:1 L/d, 0.7mm gap with 300V bias

185nm UV illumination. Top MCP hex modulation (sharp) and faint bottom MCP modulation

3000 sec background, 0.0845 events $cm^{-2} sec^{-1}$ at 7×106 gain, 1050V bias on each MCP

Robustness

MCP 162, 2nd Batch MCPs, 20µm

Breakdown event with a phosphor screen which essentially evaporated away the electrode on a part of MCP162.

Inspection showed no melting of the pores. Electroded on top of the damaged face and tested in phosphor detector – no sign of damage! Any regular MCP would have been toast – melted!!!

33mm ALD MCP Pre-Conditioning Tests

Vacuum 350°C bakeout with RGA monitoring first, then UV flood low gain, then high current extraction "burn in" (1 – 3 μ A). Most recent ALD formulation:-*Gain increases by x10 during bake, after 1 C cm⁻² only few % gain change!*

Hermetic Packaging

- For working MCP Photodetector, need to provide
 - Functionalized, Scrubbed MCP Plates
 - Vacuum tight housing
 - Bottom plate with anode strip lines
 - Sidewall
 - Top plate with photocathode
 - Getter strip for long term pumping
 - Support/Spacers to separate MCPs, bottom/top plates

Borosilicate all glass design: Frugal, innovative \Rightarrow higher risk No pin penetration into housing Under development at Argonne

Demountable 8" Tile Prototype

Inner, outer retainer rings for demountable O-ring seal

Inner, outer retainer rings for demountable O-ring seal

Leak checking of assembled demountable structure

Photocathode Fabrication -- SSL

Cathode test run #6B, Na₂KSb cathode, Sb

B33, B33+ITO, B33+MgO/ITO substrates Substrates with ITO are very bad, ITO-MgO better, but not great

8.7" Photocathode & Seal Test Chamber

16.5" Flange Chamber Access

8.7" Photocathode/Seal Test Chamber

Large Process Chamber for Ceramic Tube Fabrication at SSL

Bialkali Photocathode Development at Argonne

- Shoot photocathode similar to traditional PMT method
 - metal beads activated by current heating
- Use glass containment vessel with bead support structure & detachable top window
- Learn method by making photocathodes on small PMTs
 - PMT processing equipment obtained from Burle Industries

Results from Photocathode Growth in Burle Process Chamber

Towards Large Area MCP Photodetectors, R. Wagner, Argonne, Antiproton Physics Workshop, Fermilab, 20111118

Friday, November 18, 2011

Bialkali Photocathode -- Scale-Up to 4" Photocathode

Towards Large Area MCP Photodetectors, R. Wagner, Argonne, Antiproton Physics Workshop, Fermila

Friday, November 18, 2011

Summary

- Large Area Microchannel Plate Photodetector project has completed 2nd year
- Many critical milestones achieved for detector realization
 - Signals acquired from full-sized tile base with 33mm MCP pair in 8" test ch.
 - ALD coatings of 33mm glass capillary disks producing gain >10⁶ for MCP pair
 - Observation of gain from 8"×8" MCP
 - Production of detector quality 8"×8" glass capillary arrays
 - Developed 3 ALD resistive + 2 ALD emissive chemistries
 - Low temperature (120°C) In(52)Sn(48) seal made on 1" sidewall/window
 - Readout ASIC for picosecond resolution fabricated & tested (4th gen. chip due in October)
- Mature mechanical designs for hermetically sealed tube
 - Proven design in ceramic by SSL
 - Well-advanced inexpensive glass design -- hermetic prototypes
- Facility for 8"×8" photocathode fabrication and study near completion at SSL
 - Full-size process chamber installed, near commissioning
- Tile production facility for All-Glass MCP-PMT in design at Argonne

Visit our web site for more information: <u>http://psec.uchicago.edu</u> ("Blog" and "Library" links are a good starting place)

BACKUP SLIDES

Anodic Aluminum Oxide (AAO) Development

- Self-ordering fabrication of pore structure in aluminum by anodization
- Alternative to glass capillary MCP
- Argonne AAO fabrication is 2-step
 - Form 10nm pore matrix through anodization (more "natural" size for process)
 - Pattern and etch 2-10µm pore via photolithography
 - Initial 10nm pore structure enables uniform etch larger diameter pores
- Development at Argonne is very successful
 - Now producing pores with funneled pores
 - Potential for large effective open area ratio
 - Addresses first-strike problem
 - Possible future generation of MCP with Photocathode coated on funnel via ALD

5µm funnel

32.8mm AAO test substrate

Towards Large Area MCP Photodetectors, R. Wagner, Argonne, Antiproton Physics Workshop, Fermilab, 2041A1pore, L/D~10, 23% open area

Scale-up to Large Surface Area

Process scale-up on large reactor substrate location

Chemistry #1:

1% thickness increase across Si wafers Up to 30% increase after MCP locations

300mm Si wafer coated with Chemistry #2

Scale-Up of ALD Processing -- Beneq Reactor

Arrived 18 May 2010

Studying ALD on Large Surface Areas

- 33mm disk surface area is 0.13m²
- 8"x8" surface area is
 6.4m²
- 20 MCPs area is 129m²

Stackable 20cm × 20cm plate holders for multiple plate coating in Beneq Reactor

Development of Lower Cost Large Area MCP Photodetector, R. Wagner, Argonne, LIGHT11, Ringberg Castle, 20111101

Wednesday August 25, 2010 Friday, November 18, 2011

8"×8" MCP Plate Testing at SSL

ALD Coated 8"×8" 20µm MCPs 1st production quality plates (Apr, 2011) Develop process for Resistive Coating

Tuning parameters now for ALD coating in Beneq reactor

8" electroded MCP in the open face test detector.

MCP #3 and MCP #2 have been electroded on both sides with 1700Å inconel. #2 is $31k\Omega$ and #3 is $3M\Omega$ in air - and vacuum (Needs to be ~10-30M Ω).

Visual Study of ALD Coated MCP at SSL

Glass capillaries coated by Arradiance, Inc.

Pair test at Space Sciences Lab/UC-Berkeley

Electron map of MCP

"Multi" boundaries visible, fade at higher gain

Mock Tile Fabrication

- Short-cut to testing full assembled large area MCP-PMT
- Glass 8"×8" Mock MCP w/4 holes for 33mm functional MCP pairs
- Use tile bases with pump-out port on sidewall & standard anode bottom plate
- Top window with Al photocathode
- Top seal with glass frit (like bottom seal)

Mock Tile Fabrication -- Tile Base

Apply Frit Paste to Sidewall

350°C Fire to Dry Paste

470°C Fire to Glaze

Bond Anode Plate

Completed Tile Base w/Vacuum Tight Bond

Attach Getter Holders Silver Ink Frit @ 350°C

Friday, November 18, 2011

Opaque GaN Deposited on 33mm ALD MCP

Borosilicate/ALD MCP coated by MBE with P-doped GaN/AIN of various thicknesses (amorphous/polycrystalline) and tested in a photon counting imaging detector

Integrated photon counting image using 184 nm UV shows unprocessed GaN layer response vs bare MCP.

QEs (@214nm UV) measured after Cs. 10° (blue) or 45° (white) graze angle. Typical QE- thickness asymptote for opaque cathode.

General procedures for Fabrication of MCPs

