Anti-Proton Drell-Yan Issues and Opportunities

Fred Olness SMU/CTEQ

Thanks to Jeff Owens, Pavel Nadolsky, Zack Sullivan

18 November 2011 Fermilab

1

PDF extraction requires a variety of measurements

<u>Different</u> linear combinations – key for flavor differentiation

$$\sigma(\gamma, Z) \sim \left[u \, \bar{u} + d \, \bar{d} + s \, \bar{s} + c \, \bar{c} + \dots \right]$$
$$\sigma(W) \sim \left[u \, \bar{d} + d \, \bar{u} + s \, \bar{c} + c \, \bar{s} + \dots \right]$$

DY combinations have interesting history

As we've already seen from Dan Kaplan:

pp Drell-Yan

What are the issues in the kinematic region of interest???

What is the kinematic region we will work in???

Low Q: DGLAP can evolve to Hi-Q. Provides BC: Possibly describe Particle/Resonance Overlap region???
Hi x: Will "feed-down" to lower x with DGLAP evolution Possibly investigate TMC & Higher Twist regions??? IOP PUBLISHING

JOURNAL OF PHYSICS G: NUCLEAR AND PARTICLE PHYSICS

J. Phys. G: Nucl. Part. Phys. 35 (2008) 053101 (32pp)

doi:10.1088/0954-3899/35/5/053101

x=0.015 (x30)

x=0.045 (x12)

1000

 Q^2

TOPICAL REVIEW

Target mass corrections

What about Higher Twist???

- Factorization breaks down
- Lose Universality
- No "First Principles" model
- ... sometimes parameterized as a Λ^2/Q^2 correction

Q: hard interaction scale Λ: characteristic hadron scale

 $(Q/\Lambda)^2$ Quality of factorization approximation

$$\sigma_{DY} = f_{P \to q} \otimes f_{P \to q} \otimes \hat{f}_{P \to q} \otimes \hat{f}_{q \bar{q} \to \mu^+ \mu^-}$$

Standard Wall Street Disclaimer:

Past performance is not necessarily a guide to future returns.

Nevertheless, lets' look at some recent history ...

E866 quark sea distributions:

new data can have a large impact

Let's look at large x

Drell-Yan Cross Section in large x limit

J. C. Webb, et al. [NuSea Collaboration], hep-ex/0302019

Proton Valence Structure: d/u for large x

For large x, nuclear binding/Fermi motion corrections are important

Even Deuterion has large effects

Lots of models to choose from

Kuhlmann el al. (CTEQ) hep-ph/9912283 0.9 Dotted-With Nuc. Corr. and d/u Forced to 0.2 0.8 Dashed-With Nuc. Cor. and CTEO5 Param. 0.7 Solid-CTEQ5M (No Nuc. Cor.) d∕u Ratio ₀ ₀ No Reliable Theory/Data W Asymmetry -and DIS Data Choice of 0.3 Param. Nuclear Cor. 0.2 Small **DIS Data Only** Nuclear Cor. Large 0.1 _____ 0 0.4 0.5 0.6 0.7 0.2 0.3 0.80.9 Parton x

Donald Isenhower (ACU) DIS'04

Uncertainties in determining parton distributions at large x. A.Accardi, W.Melnitchouk, J.F.Owens, M.E.Christy, C.E.Keppel, L.Zhu, J.G.Morfin arXiv:1102.3686 [hep-ph]

LHC values scaled appropriately

... plenty of puzzles to ponder

Nuclear A Dependence

Nuclear Corrections: Compare Neutrino and Charged Lepton 15

where all black curves stand for free proton PDF and red, green, blue, cyan, pink, yellow, magenta and brown curves show PDF in protons bound in nuclei - from deuterium (red) to lead (brown).

nCTEQ Nuclear PDF's

0.5

0.5

Heavy Quark Topics

What is the proper treatment of masses???

Constraints on PDFs from HERA Charm Data

Ringaile Placakyte

Different HQ schemes have different optimal m^{model}

Schematic Summary of ACOT & TR Schemes

TR type schemes		ACOT type schemes	
Q < m _H	Q > m _H constant term	Q < m _H	Q > m _H constant term
LO	Q = m _H	LOØ	∽∽+ Ø
NLO	+ V Q = m _H	NLO	+ + Ø
NNLO	+ Q = m _H	NNLO	+ + Ø

2009 Les Houches Comparative Studies

The SM and NLO Multileg Working Group: Summary report. *e-Print: arXiv:1003.1241 [hep-ph]*

Les Houches Comparative Study

The SM and NLO Multileg Working Group: Summary report.J. Rojo, et al.,e-Print: arXiv:1003.1241 [hep-ph]

Are there Intrinsic Heavy Quarks??? Do they matter???

- * Most sensitive near threshold
- * What happens if we allow the evolution to determine charm?

Zero: No intrinsic charm Positive: Intrinsic charm Negative: Inconsistent

Also, the 2-scale problem: {m,Q}

Final thoughts

Anti-Proton Drell-Yan Issues and Opportunities

Precision measurements in a new kinematic regime reinforce our Standard Model foundation

As experimental precision has increased, we need to be concerned about the details

- TMC & Higher Twist
- PDFs at Large X
- Nuclear A dependence
- Proper treatment of quark mass
- Resolution of outstanding puzzles

... ideas for further study

BACKUP

Heavy Quark Topics

strange

