### **Accelerator Issues**

#### Fermilab Antiproton Experiment

#### Keith Gollwitzer

Antiproton Source Department Accelerator Division Fermilab

### Outline

- Overview Accelerator Complex
  - Protons
  - Antiproton Stacking
- Accumulator Running for Experiment
  - Protons
  - Cycle time
- Accelerator work to be done
  - Equipment
  - Commission Ramps

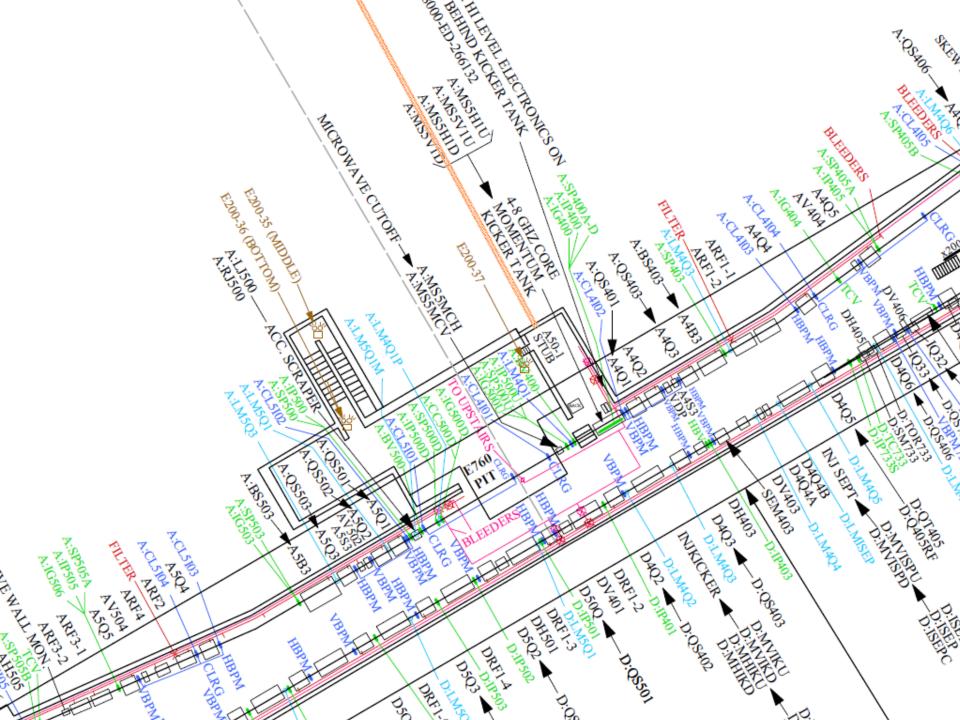
### **Protons for Antiproton Production**

- Current Operation
  - 11 Booster Batches are loaded into Main Injector
    - Batches are slip stacked to increase intensity
    - Main Injector cycle time is 2.2sec
      - Length set by loading 11 batches
  - 2 batches are sent to Antiproton Production
    Target
    - 8x10<sup>12</sup> Protons on Target
    - The other 9 batches go to NuMI
      - Note that Booster output is 1.1x10<sup>16</sup> Protons per hour

# **Antiproton Stacking**

- 8GeV negative secondaries are directed into the Debuncher Ring
  - Only antiprotons survive
  - In 2.2sec, increase beam density
  - Transfer to Accumulator before next proton pulse sent to target
- Accumulator further increases density
  - Stacktail increases longitudinal density
- Numbers
  - $27x10^{10}$  antiprotons per hour for cores<  $25x10^{10}$
  - Production efficiency is 20 antiprotons per 10<sup>6</sup> PoT
  - Rate decreases to ~18x10<sup>10</sup> antiprotons per hour for cores of ~100x10<sup>10</sup>
  - Fewer PoT or slower cycle time increase efficiency to above 30 antiprotons per 10<sup>6</sup> PoT

### **Protons for Antiproton Production**


- Future Operation (Nova era)
  - 12 Booster Batches are loaded into Recycler
    - Batches are slip stacked to increase intensity
    - One turn injection into Main Injector
    - Main Injector cycle time is then 1.33sec
    - Booster output will be 1.4x10<sup>16</sup> Protons per hour
  - Proton Economics
    - Other experiments will vie for remaining Booster cycles
    - Current Proton Plan is 1.4x10<sup>16</sup> Protons per hour
  - 2 batches are sent to Antiproton Production Target every other cycle
    - Most likely 7x10<sup>12</sup> Protons on Target
    - Most likely only stack 4-6hr/day
      - Reduction to Nova for a day is 50% of 2/12 for 6/24 = 2.5%

### Antiproton Source Cycle for Experiment

- Stack 4-6hrs
  - Stack rate: average 20x10<sup>10</sup> antiprotons per hour
  - Beam intensity will be 60 to 100x10<sup>10</sup> antiprotons
- Preparation of Antiproton Beam (<2hr)</li>
  - Cool Beam
  - Decelerate Beam to desired energy
  - Cool Beam again before interacting with target
- Run Experiment (16-24hr)
  - Continuous readout/recording orbit and f<sub>rev</sub>
  - Cool Beam due to target heating

### **Accelerator Equipment Needed**

- Ramp Control System
  - Synchronizes changes of magnet currents with RF cavities frequencies during deceleration ramp.
- Switchable Cooling Delay Lines
  - Stochastic cooling timing adjustments for different energies
- Movement of 4-8GHz Core Momentum cooling tanks
   A kicker tank is now encroaching into experiment area
  - Need to move kicker tanks upstream and remove/reposition stairs.
- Continuation of procuring/making spares



## Commissioning

 Prior to running beam with detector in place, will want to re-install concrete shielding to protect experiment from showers caused by secondaries during stacking

- Ramp commissioning is done with protons
  - Will do on core orbit (not central orbit due to location of 4-8GHz momentum pick-ups)
  - Takes 2-3 months depending upon desired lowest energy and ramping efficiency

# Conclusion

 Fermilab's Antiproton Source can host an experiment with little accelerator work and commissioning.

### Back-ups

### World's Best Antiproton Source

- Antiprotons produced
  - Fermilab
  - <sup>2010</sup> Current: 600x10<sup>10</sup> pbars/day ; 12x10<sup>14</sup> pbars/year
  - <sup>2013</sup> Future: 100x10<sup>10</sup> pbars/day ; 2x10<sup>14</sup> pbars/year
  - CERN AD
  - <sup>2009</sup> Current: 350x10<sup>10</sup> pbars/year
  - GSI FAIR
  - 2017? Modules 0-3: 15x10<sup>10</sup> pbars/day ; 0.4x10<sup>14</sup> pbars/year
  - <sup>2020?</sup> Module 5: 70x10<sup>10</sup> pbars/day ; 1x10<sup>14</sup> pbars/year
  - $_{2025^+}$  Uprade: 140x10<sup>10</sup> pbars/day ; 2x10<sup>14</sup> pbars/year

## Other Uses of Antiproton Source

- Mu2e has CD0
  - Tunnel Depth radiation issues
  - Earliest to be ready 2017
    - Will need 1 year to connect to extraction tunnel, remove unwanted components and install new items
- DOE is to evaluate g-2 during special Aug. review
  - Evolving desires make it more \$ and more \$
  - In my opinion, unrealistic about being able to support all that g-2 needs along with other projects
  - Will require more AD people to operate than antiproton experiment
- Both face proton economics issues