

The $X(3872)$ Files

Eric Braaten
Ohio State University

support
DOE, Division of High Energy Physics

The $X(3872)$ Files

- What is the $X(3872)$?
- Universal properties
- Misconceptions
- Partial Width into $P \bar{P}$
- X(3872) as source of correlated charm pairs

X(3872)

discovered by Belle Collaboration in August 2003

$$
B^{+} \rightarrow K^{+}+X \quad X \rightarrow J / \Psi \pi^{+} \pi^{-}
$$

confirmed by CDF Collaboration in November 2003

$$
p \bar{p} \rightarrow X+\text { anything } \quad X \rightarrow J / \Psi \pi^{+} \pi^{-}
$$

other observed decay modes:

$$
J / \psi \pi^{+} \pi^{-} \pi^{0}
$$

$J / \Psi \gamma$
$\Psi(2 S) \gamma(?) \quad D^{0} \bar{D}^{0} \gamma$

Mass of $\mathrm{X}(3872)$

mass measured in $J / \Psi \pi^{+} \pi^{-}$channel
CDF, Belle, Babar, D0

$$
M_{x}=387 \mathrm{I} .52 \pm 0.20 \mathrm{MeV}
$$

mass relative to $D^{* 0} \bar{D}^{0}$ threshold

$$
-E_{X}=-0.42 \pm 0.39 \mathrm{MeV}
$$

Quantum numbers
 of X(3872)

a) decay into $J / \Psi \gamma$

$$
\Rightarrow C=+\quad \text { Belle, Babar }
$$

b) momentum distributions for $J / \Psi \pi^{+} \pi^{-}$

$$
\Rightarrow J^{P}=I^{+} \text {or } 2^{-} \quad \text { Belle, CDF }
$$

c) decay into $D^{0} \bar{D}^{0} T^{0}$

$$
\Rightarrow J^{p}=2^{-} \text {disfavored Belle, Babar }
$$

$$
J^{P C}=I^{++}
$$

Quantum numbers
 of X(3872)

new Babar analysis of decay into $J / \Psi \pi^{+} \pi^{-} \pi^{0}$ $\Rightarrow J^{P}=2^{-}$favored over I^{+}

$$
J^{P C}=2^{-+} ?
$$

Quantum numbers
 of X(3872)

new Babar analysis of decay into $J / \Psi \pi^{+} \pi^{-} \pi^{0}$ $\Rightarrow J^{p}=2^{-}$favored over I^{+}

$$
J^{P C}=2^{-+} ?
$$

What, Me Worry?

What is the $X(3872)$?

Two crucial experimental inputs:
I. Quantum numbers: $J^{P C}=I^{++}$
2. Mass is below $D^{* 0} \bar{D}^{0}$ threshold by

$$
E_{X}=0.42 \pm 0.39 \mathrm{MeV}
$$

Inevitable conclusion
$X(3872)$ is loosely-bound charm meson molecule

$$
X=\frac{1}{\sqrt{2}}\left(D^{* 0} \bar{D}^{0}+D^{0} \bar{D}^{* 0}\right)
$$

with large separation between charm mesons

What is the $X(3872)$? (cont.)
Two crucial experimental inputs:
I. Quantum numbers: $J^{\mathrm{PC}}=1^{++}$
$\Rightarrow X(3872)$ has $\underline{\text { S-wave coupling to } D^{*} \overline{D^{0}}}$
2. Mass is below $D^{*} \bar{D}^{0}$ threshold by

$$
E_{X}=0.42 \pm 0.39 \mathrm{MeV}
$$

$\Rightarrow X(3872)$ has resonant coupling to $D^{*} 0 \bar{D}^{0}$

Quantum mechanics implies that
S-wave near-threshold resonances have universal properties determined by the large scattering length a

What is the $\mathrm{X}(3872)$? (cont.)
Universal properties of an S-wave near-threshold resonance with $a>0$
a) binding energy: $\quad E_{X}=\hbar^{2} /\left(2 \mu a^{2}\right)$
b) rms separation: $r_{X}=a / \sqrt{2}$

Apply to X(3872):

$$
\begin{aligned}
E_{X} & =0.42 \pm 0.39 \mathrm{MeV} \\
& \Rightarrow r_{X}=4.9^{+13.4}-\frac{1.4}{} \mathrm{fm}
\end{aligned}
$$

What is the $X(3872)$?
Universal properties of $X(3872)$ do not depend on binding mechanism!

- potential between $D^{* 0} \bar{D}^{0}$ just deep enough for bound state?
- P-wave charmonium state $\mathrm{X}_{\mathrm{c}}(2 \mathrm{P})$ near $D^{* 0} D^{0}$ threshold?
- tetraquark state near $D^{* 0} \overline{D^{0}}$ threshold?

Resonant interactions with $D^{* 0} \bar{D}^{0}$
will transform it into a charm meson molecule

What is the $X(3872)$? (cont.)
$X(3872)$ is a charm meson molecule with large separation between charm mesons

Why is this conclusion not universally accepted?

- lack of familiarity with S-wave threshold resonances
- failure to distinguish between universal predictions and predictions of specific models
- confusion from $D^{* 0} \bar{D}^{0}$ decay modes

Universal Properties of X(3872)

Universal properties
of S-wave near-threshold resonance can be derived from
universal scattering amplitude

$$
\begin{aligned}
f(E) & =\frac{1}{-\gamma+\sqrt{-2 \mu(E+i \epsilon)}} \\
E & =\text { energy relative to threshold } \\
\gamma & =\text { inverse scattering length }
\end{aligned}
$$

Inclusive line shape (summed over decay channels)

$$
\operatorname{Im} f(E)
$$

Universal properties (cont.)

Scattering amplitude for $D^{* 0} \bar{D}^{0}$

Take into account

- $\mathrm{D}^{* 0}$ width: $\Gamma_{* 0} \approx 70 \mathrm{keV}$
- inelastic scattering channels $\left(J / \Psi \pi^{+} \pi^{--}\right.$, etc.)
complex scattering length

$$
f(E)=\frac{1}{-\left(\gamma_{\mathrm{re}}+i \gamma_{\mathrm{im}}\right)+\sqrt{-2 \mu\left(E+i \Gamma_{* 0} / 2\right)}}
$$

Universal line shape (summed over decay channels)

$$
\operatorname{Im} f(E)
$$

Universal properties (cont.)
Line shapes in J/ $\Psi \pi^{+} \Pi^{-}$versus $D^{0} \bar{D}^{0} \Pi^{0}$

position and width of peak in $D^{0} D^{0} \pi^{0}$ are not mass and width of $X(3872)$!

Line shapes (cont.)
$X(3872)$ resonance in $D^{*} \bar{D}^{0}$
If $D^{0} T^{0}$ has invariant mass close enough to $D^{* 0}$ mass (within 6 MeV for Belle, within 10 MeV for Babar) impose constraint that it comes from decay of $D^{* 0}$

Line shapes (cont.)

$$
D^{0} \bar{D}^{0} T^{0} \text { versus } D^{*} \bar{D}^{0}
$$

position and width of peak in $D^{*} 0 \bar{D}^{0}$ are not mass and width of $X(3872)$!

Misconceptions about $\times(3872)$

- PDG averages for Mass and Width
- X(3872) might be a virtual state
- branching ratio for radiative decays into $\psi(2 S)$ and J / Ψ is inconsistent with molecule
- production rate at the Tevatron is orders of magnitude too large for a molecule

Misconceptions about $X(3872)$ (cont.)

PDG averages 2008, 2009

Mass: 3872.3 +/- 0.8 MeV
from combining measurements in $J / \psi \pi^{+} \Pi^{-}, D^{0} \bar{D}^{0} \Pi^{0}, D^{*} \bar{D}^{0}$ channels Belle, CDF, Babar, D0

Width: $3.4^{+2.1}{ }_{-1.7} \mathrm{MeV}$
from one measurement in $D^{*} \bar{D}^{0}$ channel
Babar
BUT measurements in $D^{0} \bar{D}^{0} \Pi^{0}, D^{*} \bar{D}^{0}$ channels are NOT measurements of mass and width of $X(3872)$!

Misconceptions about $\times(3872)$ (cont.) measurements of mass of $X(3872)$

4 lowest measurements: $J / \psi \pi^{+} \pi^{-}$
2 highest measurements: $D^{0} \bar{D}^{0} \pi^{0}, ~ D^{* 0} \bar{D}^{0}$
incompatible sets of measurements
PDG: combine them anyway and inflate error by 2.3

Misconceptions about $\mathrm{X}(3872)$ (cont.)
best unbiased measurements of mass and width of $X(3872)$ are from $\mathrm{J} / \Psi \pi^{+} \pi^{-}$channel

Mass: $387 \mathrm{I} .52+/-0.20 \mathrm{MeV}$
from measurements in $J / \psi \pi^{+} \pi^{-}$channel Belle, CDF, Babar, D0

Width: < 2.2 MeV at 90% C.L.
from measurement in $J / \Psi \pi^{+} \pi^{-}$channel Belle, Babar

What will PDG listing for $X(3872)$ be in 2010 ?

Misconceptions about $\times(3872)$ (cont.)

- X(3872) might be a virtual state

all analyses that prefer a virtual state have ignored decays into $D^{0} \bar{D}^{0} \pi^{0}$ from resonant peak below threshold

Misconceptions about $\times(3872)$ (cont.)

- Branching ratio
for radiative decays into $\psi(2 S)$ and J / Ψ is inconsistent with molecule
$\frac{\operatorname{Br}[X \rightarrow \psi(2 S) \gamma]}{\operatorname{Br}[X \rightarrow J / \psi \gamma]}=$
"generally inconsistent
with a purely $D^{* 0} \bar{D}^{0}$ molecular interpretation"

NO! inconsistent with model by Swanson in which $X(3872)$ is bound state of

$$
D^{*} \bar{D}, D \bar{D}^{*}, J / \psi \rho, J / \psi \omega
$$

Misconceptions about $\times(3872)$ (cont.)

- Production rate at the Tevatron is orders of magnitude too large for a molecule
proposed upper bound: Bignamini et al.

$$
\sigma[X]<\sigma_{\text {naive }}\left[D^{* 0} \bar{D}^{0}, k<\sqrt{2 \mu E_{X}}\right]
$$

integrate charm meson cross section up to binding momentum
estimate of cross section:
Artoisenet, Braaten

$$
\sigma[X] \approx \sigma_{\text {naive }}\left[D^{* 0} \bar{D}^{0}, k<m_{\pi}\right] \frac{6 \pi \sqrt{2 \mu E_{X}}}{m_{\pi}}
$$

takes into account rescattering of charm mesons orders of magnitude larger than proposed upper bound

Partial width for $X(3872) \rightarrow P \bar{p}$

partial width for $\psi(3686)$

$$
\Gamma\left[\Psi^{\prime} \rightarrow \mathrm{p} \overline{\mathrm{P}}\right]=87 \pm 5 \mathrm{eV}
$$

partial width for $X_{c ı}(35 \| I)$

$$
\Gamma\left[X_{c l} \rightarrow P \bar{P}\right]=59 \pm 6 \mathrm{eV}
$$

estimate of partial width for $\mathrm{X}(3872)$

$$
\Gamma[X \rightarrow p \bar{p}] \approx 30 \mathrm{eV} \times\left(\mathrm{E}_{\mathrm{x}} / 0.42 \mathrm{MeV}\right)^{1 / 2}
$$

Braaten, Phys. Rev. D 77,034I9 (2008)
from estimated cross section for $\mathrm{P} \overline{\mathrm{P}} \rightarrow \mathrm{D}^{*} \overline{\mathrm{D}}^{0}$ obtained by scaling cross section for $P \bar{P} \rightarrow K^{*+} K^{--}$

Partial Width (cont.)
Comparison of \bar{P} partial widths

$$
\text { for } X(3872), X_{c l}(35 I I)
$$

- creation of light quark pairs with large relative momentum $2 m_{p} / 3$
$X(3872)$ requires creation of $u \bar{u}, d \bar{d}$ $X_{c l}(35 I I)$ requires creation of $u \bar{u}, \bar{u}, d \bar{d}$ \Rightarrow suppression by $\alpha_{s}{ }^{2}\left(2 m_{p} / 3\right)\left(\Lambda_{\mathrm{QCD}} / m_{p}\right)^{2}$
- wavefunction near the origin $X(3872)$ is suppressed by $\left(2 \mu E_{X}\right)^{1 / 2 / m_{\pi}}$ $X_{c l}(35 I I)$ is suppressed by $m_{c}^{5}\left|R^{\prime}(0)\right|^{2} \sim v^{5}$

Partial Width (cont.)
Comparison of total widths

$$
\text { for } X(3872), X_{c l}(35 I I)
$$

- Xcı(35II)

$$
\Gamma\left[X_{c} \mid\right]=890 \pm 5 \mathrm{keV}
$$

- X(3872)
$\Gamma[X]>\Gamma\left[D^{*}\right]=65 \mathrm{keV}$ at 90% C.L.
「 $[\mathrm{X}]<2200 \mathrm{keV}$ at 90% C.L.
from $J / \Psi \pi^{+} \pi^{-}$channel (Belle, Babar)
$\mathrm{X}(3872)$ is probably narrower than $\mathrm{X}_{\mathrm{cI}}(35 \mathrm{II})$ could be much narrower

$X(3872)$ as Source of Correlated Charm Pairs

Decay of $X(3872)$ into $D^{0} \bar{D}^{0} \pi^{0}$ produces
$\mathrm{D}^{0} \overline{\mathrm{D}}^{0}$ pair with charge conjugation + (and relative momentum $\sim 50 \mathrm{MeV}$)

Correlated Charm Pairs (cont.)

Decay of $X(3872)$ into $D^{0} \bar{D}^{0} \gamma$ produces
$D^{0} D^{0}$ pair with charge conjugation -(and relative momentum $\sim 150 \mathrm{MeV}$)

Can charm pair correlations be exploited to study charm mixing ?

