Charm mixing at flavour factories

- $K\pi$, $K\pi\pi^0$: Measure RS/WS ratio as function of time, extract rotated mixing parameters.
- $K_S^0 \pi^+ \pi^-$: Measure average decay time as function of Dalitz-plot position, get mixing parameters directly.
- $\Delta\Gamma$: Measure ratios of lifetimes of CP and flavour eigenstates, eg $\tau_{KK}/\tau_{K\pi}$, to extract y_{CP} - equivalent to y in the absence of CP violation.
- $\cos \delta$: Run at the $D\overline{D}$ threshold energy and produce coherent pairs. Measure the correlation between their respective Dalitz plots to extract the strong phase.
- Current experiments have well established the existence of mixing, but are not sensitive to *CP* violation.

Reminder of mixing formalism

- Mixing is a transition from a particle to its antiparticle.
- It occurs when the flavour eigenstates (D^0, \overline{D}^0) produced in decays are not the same as the mass eigenstates (D_1, D_2) which move through space.
- We parametrise mixing by the normalised mass and width differences of the mass eigenstates:

$$egin{array}{rcl} \Delta M &=& m_1 - m_2 \ \Delta \Gamma &=& \Gamma_1 - \Gamma_2 \ \Gamma &=& (\Gamma_1 + \Gamma_2)/2 \ x &=& \Delta M/\Gamma \ y &=& \Delta \Gamma/2\Gamma. \end{array}$$

• Mixing is strongly suppressed in charmed mesons; the Standard Model predicts a very tiny $(x, y < 10^{-3})$ effect from calculable short-distance effects.

New Physics possibilities

- Long-distance effects are hard to calculate, but from considerations of phase-space SU(3) symmetry breaking we can get an upper bound of $y \sim 1\%$.
- Possible New Physics signatures:
 - $egin{array}{ll} C\!P & ext{violation} & (ext{eg} & (x,y)_{D^0} &
 eq \ & (x,y)_{ar{D}^0}). \end{array}$
 - Large mixing x, y > 1%.
 - 'Upside down' mixing, |x| > |y|.
- 'Main' measurement using $D^0 \rightarrow K\pi$ is not sensitive to the sign of x.

Falk et. al., hep-ph/0110317 Falk et. al., hep-ph/0402204

$D^0 ightarrow K^0_S h^+ h^-: x,y$

- Intermediate state $K_S^0 \rho$ with welldefined *CP* allows us to extract $\underbrace{\mathbb{E}}_{\mathbb{E}^{2.5}}^3$ strong phase at each point in the Dalitz plot.
- Variation in average decay time depends on mixing parameters - fit extracts Dalitz-plot model and mixing parameters simultaneously.
- Results from Belle and BABAR :

Experiment	Sample	x~[%]	$oldsymbol{y}$ [%]
CLEO	$9~{ m fb}^{-1}$	$1.9^{+3.2}_{-3.3}\pm 0.4\pm 0.4$	$-1.4 \pm 2.4 \pm 0.8 \pm 0.4$
Belle 2007	$540{ m fb}^{-1}$	$0.80 \pm 0.29 \pm 0.17$	$0.33 \pm 0.24 \pm 0.15$
BABAR 2010	$469{ m fb}^{-1}$	$0.16 \pm 0.23 \pm 0.12 \pm 0.08$	$0.57 \pm 0.20 \pm 0.13 \pm 0.07$

- $D^0 o K\pi$: x'^2, y'
- Unknown strong phase $\delta_{K\pi}$ between mixed and DCS decays prevents us measuring x, y directly:

$$egin{array}{lll} x' &= x\cos(\delta_{K\pi}) - y\sin(\delta_{K\pi}) \ y' &= y\cos(\delta_{K\pi}) + x\sin(\delta_{K\pi}). \end{array}$$

• WS amount as a function of time is given by

$$T_{
m WS}(t) e^{\Gamma t} \, \propto \, R_D + y' \sqrt{R_D} (\Gamma t) \ + 0.25 (x'^2 + y'^2) (\Gamma t)^2$$

and we fit for x'^2 and y'.

• Most recent results:

Experiment	Sample	$x^{\prime 2} [\%]$	y'~[%]
Belle 2006	$400{ m fb}^{-1}$	$0.018\substack{+0.021\\-0.023}$	$0.06\substack{+0.40\\-0.39}$
BABAR 2007	$384{ m fb}^{-1}$	$-0.022\pm 0.030\pm 0.021$	$0.97 \pm 0.44 \pm 0.31$
CDF 2007	$1.5{ m fb}^{-1}$	-0.012 ± 0.35	0.85 ± 0.76

$D^0 ightarrow K^+ K^- / D^0 ightarrow K \pi$: y_{CP}

• Look at ratio of decay rates between *CP* and flavour eigenstates, eg $\tau_{KK}/\tau_{K\pi}$:

$$egin{aligned} & au_{CP}^+ \ = \ au_{K\pi} \left[1 + \left| rac{q}{p}
ight| \left(y \cos \phi_f - x \sin \phi_f
ight)
ight]^{-1} \ & au_{CP}^- \ = \ au_{K\pi} \left[1 + \left| rac{p}{q}
ight| \left(y \cos \phi_f + x \sin \phi_f
ight)
ight]^{-1} \ & y_{CP} \ = \ rac{2 au_{K\pi}}{ au_{CP}^+ + au_{CP}^-} \end{aligned}$$

- KK is a CP eigenstate strong phase is zero.
- In the absence of CP violation, $\phi_f = 0$ and q = p, so $y_{CP} = y$.

 -10^{-10} -5 0 5 10 15 20 25 30 35

х

15

5

0 -5

> 10

Threshold production: $\cos \delta$

- If we had a constraint in $\delta_{K\pi}$, the doughnut from $D^0 \to K\pi$ analyses could be reduced to a much smaller part of (x, y) space.
- Running at the $D\overline{D}$ threshold allows us to extract the strong phase by looking at correlated decays.
- CLEO 2008, 281 pb⁻¹:

 $\cos \delta_{K\pi} = 1.03^{+0.31}_{-0.17} \pm 0.06.$

• Another possibility: Measure strong phase in sections of the $K_S \pi^+ \pi^-$ Dalitz plot, and do several $K\pi$ -like analyses. Reduce dependence on amplitude model.

• (x, y) seems to be in first quadrant, less than 1% mixing overall, x < y. Nothing very surprising.

• CKM-like combination of many results gives

$$egin{array}{rcl} x &=& (0.56\pm 0.21)\% \ y &=& (0.83\pm 0.13)\% \ \delta_{K\pi} &=& 1.53\pm 0.36 \ \delta_{K\pi\pi^0} &=& -0.44\pm 0.40 \end{array}$$

• Input values:

Experiment	Channel	Result $[\%]$
Belle 2007	$K^0_S\pi\pi$	$(x,y) = (0.80 \pm 0.34, 0.33 \pm 0.28)$
BABAR 2010	$K^0_S h^+ h^-$	$(x,y) = (0.16 \pm 0.28, 0.57 \pm 0.24)$
HFAG 2009	$KK,\pi\pi,K^+K^-K^0$	$y_{C\!P}=1.10\pm0.21$
Belle 2006	$K\pi$	$(x'^2,y')=(0.018\pm 0.022, 0.60\pm 0.40)$
BABAR 2007	$K\pi$	$(x^{\prime 2},y^{\prime}) = (-0.022 \pm 0.036, 0.97 \pm 0.54)$
CDF 2007	$K\pi$	$(x'^2,y')=(-0.012\pm 0.035, 0.85\pm 0.76)$
BABAR 2008	$K\pi\pi^0$	$(x'',y'')=(2.61\pm 0.73,-0.06\pm 0.69)$

SuperB: 100 times the data!

- Statistical errors reduced by factor **10**.
- Systematic errors assumed to scale with statistics.
- Note: SuperB resolution in D^0 decay time is better than at BABAR this is not taken into account.
- $K_S^0 \pi^+ \pi^-$ measurement dominates.

⊎×10⁻³

30 35

SuperB with a year at threshold

- With 500 fb⁻¹ of threshold running, we could improve the CLEO $\delta_{K\pi}$ measurement quite a bit.
- Current CLEO result (~ $1 fb^{-1}$):

$$\delta_{K\pi} = 0.87 \pm 0.58.$$

- Scaling to 500 fb⁻¹ gives error of 0.026.
- In this case the $K\pi$ mixing measurement begins to dominate.

Outlook

- These are exciting times for charm mixing studies!
- The existence of mixing is now well established.
- Studies in more channels are on the way, but...
- ... the BABAR and Belle datasets are probably not sensitive to New Physics.
- We need more luminosity, especially to measure *CP* violation.
- $\Psi(3770)$ threshold running would be very interesting.